363 lines
9.3 KiB
C
363 lines
9.3 KiB
C
/*-
|
|
* Copyright (c) 1991 The Regents of the University of California.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* This is a modified gmon.c by J.W.Hawtin <oolon@ankh.org>,
|
|
* 14/8/96 based on the original gmon.c in GCC and the hacked version
|
|
* solaris 2 sparc version (config/sparc/gmon-sol.c) by Mark Eichin. To do
|
|
* process profiling on solaris 2.X X86
|
|
*
|
|
* It must be used in conjunction with sol2-gc1.asm, which is used to start
|
|
* and stop process monitoring.
|
|
*
|
|
* Differences.
|
|
*
|
|
* On Solaris 2 _mcount is called by library functions not mcount, so support
|
|
* has been added for both.
|
|
*
|
|
* Also the prototype for profil() is different
|
|
*
|
|
* Solaris 2 does not seem to have char *minbrk which allows the setting of
|
|
* the minimum SBRK region so this code has been removed and lets pray malloc
|
|
* does not mess it up.
|
|
*
|
|
* Notes
|
|
*
|
|
* This code could easily be integrated with the original gmon.c and perhaps
|
|
* should be.
|
|
*/
|
|
|
|
#ifndef lint
|
|
static char sccsid[] = "@(#)gmon.c 5.3 (Berkeley) 5/22/91";
|
|
#endif /* not lint */
|
|
|
|
#define DEBUG
|
|
#ifdef DEBUG
|
|
#include <stdio.h>
|
|
#endif
|
|
|
|
#include "cygmon-gmon.h"
|
|
|
|
/*
|
|
* froms is actually a bunch of unsigned shorts indexing tos
|
|
*/
|
|
static int profiling = 3;
|
|
static unsigned short *froms;
|
|
static struct tostruct *tos = 0;
|
|
static long tolimit = 0;
|
|
static char *s_lowpc = 0;
|
|
static char *s_highpc = 0;
|
|
static unsigned long s_textsize = 0;
|
|
|
|
static int ssiz;
|
|
static char *sbuf;
|
|
static int s_scale;
|
|
/* see profil(2) where this is describe (incorrectly) */
|
|
#define SCALE_1_TO_1 0x10000L
|
|
|
|
#define MSG "No space for profiling buffer(s)\n"
|
|
|
|
extern int errno;
|
|
|
|
int
|
|
monstartup(lowpc, highpc)
|
|
char *lowpc;
|
|
char *highpc;
|
|
{
|
|
int monsize;
|
|
char *buffer;
|
|
register int o;
|
|
|
|
/*
|
|
* round lowpc and highpc to multiples of the density we're using
|
|
* so the rest of the scaling (here and in gprof) stays in ints.
|
|
*/
|
|
lowpc = (char *)
|
|
ROUNDDOWN((unsigned)lowpc, HISTFRACTION*sizeof(HISTCOUNTER));
|
|
s_lowpc = lowpc;
|
|
highpc = (char *)
|
|
ROUNDUP((unsigned)highpc, HISTFRACTION*sizeof(HISTCOUNTER));
|
|
s_highpc = highpc;
|
|
s_textsize = highpc - lowpc;
|
|
monsize = (s_textsize / HISTFRACTION) + sizeof(struct phdr);
|
|
buffer = (char *) sbrk (monsize);
|
|
if (buffer == (char *) -1)
|
|
{
|
|
write (2, MSG , sizeof(MSG));
|
|
return;
|
|
}
|
|
bzero (buffer, monsize);
|
|
froms = (unsigned short *) sbrk (s_textsize / HASHFRACTION);
|
|
if (froms == (unsigned short *) -1)
|
|
{
|
|
write(2, MSG, sizeof(MSG));
|
|
froms = 0;
|
|
return;
|
|
}
|
|
bzero (froms, s_textsize / HASHFRACTION);
|
|
tolimit = s_textsize * ARCDENSITY / 100;
|
|
if (tolimit < MINARCS)
|
|
{
|
|
tolimit = MINARCS;
|
|
}
|
|
else
|
|
{
|
|
if (tolimit > 65534)
|
|
{
|
|
tolimit = 65534;
|
|
}
|
|
}
|
|
tos = (struct tostruct *) sbrk( tolimit * sizeof( struct tostruct ) );
|
|
if (tos == (struct tostruct *) -1)
|
|
{
|
|
write (2, MSG, sizeof(MSG));
|
|
froms = 0;
|
|
tos = 0;
|
|
return;
|
|
}
|
|
bzero (tos, tolimit * sizeof( struct tostruct ) );
|
|
tos[0].link = 0;
|
|
sbuf = buffer;
|
|
ssiz = monsize;
|
|
( (struct phdr *) buffer ) -> lpc = lowpc;
|
|
( (struct phdr *) buffer ) -> hpc = highpc;
|
|
( (struct phdr *) buffer ) -> ncnt = ssiz;
|
|
monsize -= sizeof(struct phdr);
|
|
if ( monsize <= 0 )
|
|
return;
|
|
o = highpc - lowpc;
|
|
if (monsize < o)
|
|
{
|
|
s_scale = ( (float) monsize / o ) * SCALE_1_TO_1;
|
|
}
|
|
else
|
|
s_scale = SCALE_1_TO_1;
|
|
moncontrol (1);
|
|
}
|
|
|
|
void
|
|
_mcleanup()
|
|
{
|
|
int fd;
|
|
int fromindex;
|
|
int endfrom;
|
|
char *frompc;
|
|
int toindex;
|
|
struct rawarc rawarc;
|
|
|
|
moncontrol (0);
|
|
profil_write (1, sbuf, ssiz);
|
|
|
|
endfrom = s_textsize / (HASHFRACTION * sizeof(*froms));
|
|
for ( fromindex = 0 ; fromindex < endfrom ; fromindex++ )
|
|
{
|
|
if ( froms[fromindex] == 0 )
|
|
{
|
|
continue;
|
|
}
|
|
frompc = s_lowpc + (fromindex * HASHFRACTION * sizeof(*froms));
|
|
for (toindex=froms[fromindex]; toindex!=0; toindex=tos[toindex].link)
|
|
{
|
|
rawarc.raw_frompc = (unsigned long) frompc;
|
|
rawarc.raw_selfpc = (unsigned long) tos[toindex].selfpc;
|
|
rawarc.raw_count = tos[toindex].count;
|
|
profil_write (2, &rawarc, sizeof (rawarc));
|
|
}
|
|
}
|
|
profil_write (3, 0, 0);
|
|
}
|
|
|
|
static char already_setup = 0;
|
|
|
|
_mcount()
|
|
{
|
|
register char *selfpc;
|
|
register unsigned short *frompcindex;
|
|
register struct tostruct *top;
|
|
register struct tostruct *prevtop;
|
|
register long toindex;
|
|
|
|
/*
|
|
* find the return address for mcount,
|
|
* and the return address for mcount's caller.
|
|
*/
|
|
|
|
/* selfpc = pc pushed by mcount call.
|
|
This identifies the function that was just entered. */
|
|
selfpc = (void *) __builtin_return_address (0);
|
|
/* frompcindex = pc in preceding frame.
|
|
This identifies the caller of the function just entered. */
|
|
frompcindex = (void *) __builtin_return_address (1);
|
|
|
|
if (! already_setup)
|
|
{
|
|
extern etext();
|
|
extern _ftext();
|
|
already_setup = 1;
|
|
monstartup(_ftext, etext);
|
|
atexit(_mcleanup);
|
|
}
|
|
/*
|
|
* check that we are profiling
|
|
* and that we aren't recursively invoked.
|
|
*/
|
|
if (profiling)
|
|
{
|
|
goto out;
|
|
}
|
|
profiling++;
|
|
/*
|
|
* check that frompcindex is a reasonable pc value.
|
|
* for example: signal catchers get called from the stack,
|
|
* not from text space. too bad.
|
|
*/
|
|
frompcindex = (unsigned short *)((long)frompcindex - (long)s_lowpc);
|
|
if ((unsigned long)frompcindex > s_textsize)
|
|
{
|
|
goto done;
|
|
}
|
|
frompcindex =
|
|
&froms[((long)frompcindex) / (HASHFRACTION * sizeof(*froms))];
|
|
toindex = *frompcindex;
|
|
if (toindex == 0)
|
|
{
|
|
/*
|
|
* first time traversing this arc
|
|
*/
|
|
toindex = ++tos[0].link;
|
|
if (toindex >= tolimit)
|
|
{
|
|
goto overflow;
|
|
}
|
|
*frompcindex = toindex;
|
|
top = &tos[toindex];
|
|
top->selfpc = selfpc;
|
|
top->count = 1;
|
|
top->link = 0;
|
|
goto done;
|
|
}
|
|
top = &tos[toindex];
|
|
if (top->selfpc == selfpc)
|
|
{
|
|
/*
|
|
* arc at front of chain; usual case.
|
|
*/
|
|
top->count++;
|
|
goto done;
|
|
}
|
|
/*
|
|
* have to go looking down chain for it.
|
|
* top points to what we are looking at,
|
|
* prevtop points to previous top.
|
|
* we know it is not at the head of the chain.
|
|
*/
|
|
for (; /* goto done */; )
|
|
{
|
|
if (top->link == 0)
|
|
{
|
|
/*
|
|
* top is end of the chain and none of the chain
|
|
* had top->selfpc == selfpc.
|
|
* so we allocate a new tostruct
|
|
* and link it to the head of the chain.
|
|
*/
|
|
toindex = ++tos[0].link;
|
|
if (toindex >= tolimit)
|
|
{
|
|
goto overflow;
|
|
}
|
|
top = &tos[toindex];
|
|
top->selfpc = selfpc;
|
|
top->count = 1;
|
|
top->link = *frompcindex;
|
|
*frompcindex = toindex;
|
|
goto done;
|
|
}
|
|
/*
|
|
* otherwise, check the next arc on the chain.
|
|
*/
|
|
prevtop = top;
|
|
top = &tos[top->link];
|
|
if (top->selfpc == selfpc)
|
|
{
|
|
/*
|
|
* there it is.
|
|
* increment its count
|
|
* move it to the head of the chain.
|
|
*/
|
|
top->count++;
|
|
toindex = prevtop->link;
|
|
prevtop->link = top->link;
|
|
top->link = *frompcindex;
|
|
*frompcindex = toindex;
|
|
goto done;
|
|
}
|
|
}
|
|
done:
|
|
profiling--;
|
|
/* and fall through */
|
|
out:
|
|
return; /* normal return restores saved registers */
|
|
|
|
overflow:
|
|
profiling++; /* halt further profiling */
|
|
# define TOLIMIT "mcount: tos overflow\n"
|
|
write (2, TOLIMIT, sizeof(TOLIMIT));
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Control profiling
|
|
* profiling is what mcount checks to see if
|
|
* all the data structures are ready.
|
|
*/
|
|
moncontrol(mode)
|
|
int mode;
|
|
{
|
|
if (mode)
|
|
{
|
|
/* start */
|
|
profil((unsigned short *)(sbuf + sizeof(struct phdr)),
|
|
ssiz - sizeof(struct phdr),
|
|
(int)s_lowpc, s_scale);
|
|
|
|
profiling = 0;
|
|
}
|
|
else
|
|
{
|
|
/* stop */
|
|
profil((unsigned short *)0, 0, 0, 0);
|
|
profiling = 3;
|
|
}
|
|
}
|