4
0
mirror of git://sourceware.org/git/newlib-cygwin.git synced 2025-01-22 06:57:36 +08:00
Thomas Fitzsimmons d3bd3632ac * libc/sys/linux/cmath: New directory.
* libc/sys/linux/include/cmathcalls.h: New file.
	* libc/sys/linux/include/complex.h: New file.
	* libc/sys/linux/machine/i386/huge_val.h: New file
	* libm/math/w_sincos.c: New file
	* libm/math/wf_sincos.c: New file
	* libm/mathfp/s_sincos.c: New file
	* libm/mathfp/sf_sincos.c: New file
	* Makefile.am (LIBC_OBJECTLISTS): Add cmath/objectlist.awk.in.
	* libc/include/math.h: Add sincos and sincosf declarations.
	* libc/sys/linux/Makefile.am (SUBDIRS): Add cmath.
	(SUBLIBS): Likewise.
	* libc/sys/linux/configure.in (AC_OUTPUT): Add cmath.
	* libm/math/Makefile.am (src): Add w_sincos.c.
	(fsrc): Add wf_sincos.c.
	* libm/mathfp/Makefile.am (src): Add s_sincos.c
	(fsrc): Add sf_sincos.c.
2002-08-16 21:29:45 +00:00

111 lines
2.9 KiB
C

/* Complex square root of long double value.
Copyright (C) 1997, 1998 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Based on an algorithm by Stephen L. Moshier <moshier@world.std.com>.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA. */
#include <complex.h>
#include <math.h>
#include "math_private.h"
__complex__ long double
__csqrtl (__complex__ long double x)
{
__complex__ long double res;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
if (rcls <= FP_INFINITE || icls <= FP_INFINITE)
{
if (icls == FP_INFINITE)
{
__real__ res = HUGE_VALL;
__imag__ res = __imag__ x;
}
else if (rcls == FP_INFINITE)
{
if (__real__ x < 0.0)
{
__real__ res = icls == FP_NAN ? __nanl ("") : 0;
__imag__ res = __copysignl (HUGE_VALL, __imag__ x);
}
else
{
__real__ res = __real__ x;
__imag__ res = (icls == FP_NAN
? __nanl ("") : __copysignl (0.0, __imag__ x));
}
}
else
{
__real__ res = __nanl ("");
__imag__ res = __nanl ("");
}
}
else
{
if (icls == FP_ZERO)
{
if (__real__ x < 0.0)
{
__real__ res = 0.0;
__imag__ res = __copysignl (__ieee754_sqrtl (-__real__ x),
__imag__ x);
}
else
{
__real__ res = fabsl (__ieee754_sqrtl (__real__ x));
__imag__ res = __copysignl (0.0, __imag__ x);
}
}
else if (rcls == FP_ZERO)
{
long double r = __ieee754_sqrtl (0.5 * fabsl (__imag__ x));
__real__ res = __copysignl (r, __imag__ x);
__imag__ res = r;
}
else
{
long double d, r, s;
d = __ieee754_hypotl (__real__ x, __imag__ x);
/* Use the identity 2 Re res Im res = Im x
to avoid cancellation error in d +/- Re x. */
if (__real__ x > 0)
{
r = __ieee754_sqrtl (0.5L * d + 0.5L * __real__ x);
s = (0.5L * __imag__ x) / r;
}
else
{
s = __ieee754_sqrtl (0.5L * d - 0.5L * __real__ x);
r = fabsl ((0.5L * __imag__ x) / s);
}
__real__ res = r;
__imag__ res = __copysignl (s, __imag__ x);
}
}
return res;
}
weak_alias (__csqrtl, csqrtl)