4
0
mirror of git://sourceware.org/git/newlib-cygwin.git synced 2025-01-26 17:17:20 +08:00
Corinna Vinschen 47e7288769 Use correct gid value for Microsoft Account when /etc/group is in use
* sec_acl.cc (get_posix_access): In case owner SID == group SID, when
	encountering the group entry, change the value of `id' accordingly.
	Explain why.

Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
2015-11-29 20:26:48 +01:00

1713 lines
49 KiB
C++

/* sec_acl.cc: Sun compatible ACL functions.
Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
2011, 2012, 2014, 2015 Red Hat, Inc.
Written by Corinna Vinschen <corinna@vinschen.de>
This file is part of Cygwin.
This software is a copyrighted work licensed under the terms of the
Cygwin license. Please consult the file "CYGWIN_LICENSE" for
details. */
#include "winsup.h"
#include <stdlib.h>
#include <sys/acl.h>
#include <ctype.h>
#include "cygerrno.h"
#include "security.h"
#include "path.h"
#include "fhandler.h"
#include "dtable.h"
#include "cygheap.h"
#include "ntdll.h"
#include "tls_pbuf.h"
/* How does a correctly constructed new-style Windows ACL claiming to be a
POSIX ACL look like?
- NULL ACE (special bits, CLASS_OBJ).
- USER_OBJ deny. If the user has less permissions than the sum of CLASS_OBJ
(or GROUP_OBJ if CLASS_OBJ doesn't exist) and OTHER_OBJ, deny the excess
permissions so that group and other perms don't spill into the owner perms.
USER_OBJ deny ACE == ~USER_OBJ & (CLASS_OBJ | OTHER_OBJ)
or
USER_OBJ deny ACE == ~USER_OBJ & (GROUP_OBJ | OTHER_OBJ)
- USER deny. If a user has more permissions than CLASS_OBJ, or if the
user has less permissions than OTHER_OBJ, deny the excess permissions.
USER deny ACE == (USER & ~CLASS_OBJ) | (~USER & OTHER_OBJ)
- USER_OBJ allow ACE
- USER allow ACEs
The POSIX permissions returned for a USER entry are the allow bits alone!
- GROUP{_OBJ} deny. If a group has more permissions than CLASS_OBJ,
or less permissions than OTHER_OBJ, deny the excess permissions.
GROUP{_OBJ} deny ACEs == (GROUP & ~CLASS_OBJ)
- GROUP_OBJ allow ACE
- GROUP allow ACEs
The POSIX permissions returned for a GROUP entry are the allow bits alone!
- 2. GROUP{_OBJ} deny. If a group has less permissions than OTHER_OBJ,
deny the excess permissions.
2. GROUP{_OBJ} deny ACEs == (~GROUP & OTHER_OBJ)
- OTHER_OBJ allow ACE
Rinse and repeat for default ACEs with INHERIT flags set.
- Default NULL ACE (S_ISGID, CLASS_OBJ). */
/* POSIX <-> Win32 */
/* Historically, these bits are stored in a NULL SID ACE. To distinguish the
new ACL style from the old one, we're using an access denied ACE, plus
setting an as yet unused bit in the access mask. The new ACEs can exist
twice in an ACL, the "normal one" containing CLASS_OBJ and special bits
and the one with INHERIT bit set to pass the DEF_CLASS_OBJ bits and the
S_ISGID bit on. */
#define CYG_ACE_ISVTX 0x001 /* 0x200 <-> 0x001 */
#define CYG_ACE_ISGID 0x002 /* 0x400 <-> 0x002 */
#define CYG_ACE_ISUID 0x004 /* 0x800 <-> 0x004 */
#define CYG_ACE_ISBITS_TO_POSIX(val) \
(((val) & 0x007) << 9)
#define CYG_ACE_ISBITS_TO_WIN(val) \
(((val) & (S_ISVTX | S_ISUID | S_ISGID)) >> 9)
#define CYG_ACE_MASK_X 0x008 /* 0x001 <-> 0x008 */
#define CYG_ACE_MASK_W 0x010 /* 0x002 <-> 0x010 */
#define CYG_ACE_MASK_R 0x020 /* 0x004 <-> 0x020 */
#define CYG_ACE_MASK_RWX 0x038
#define CYG_ACE_MASK_VALID 0x040 /* has mask if set */
#define CYG_ACE_MASK_TO_POSIX(val) \
(((val) & CYG_ACE_MASK_RWX) >> 3)
#define CYG_ACE_MASK_TO_WIN(val) \
((((val) & S_IRWXO) << 3) \
| CYG_ACE_MASK_VALID)
#define CYG_ACE_NEW_STYLE READ_CONTROL /* New style if set. */
int
searchace (aclent_t *aclp, int nentries, int type, uid_t id)
{
int i;
for (i = 0; i < nentries; ++i)
if ((aclp[i].a_type == type && (id == ILLEGAL_UID || aclp[i].a_id == id))
|| !aclp[i].a_type)
return i;
return -1;
}
/* Define own bit masks rather than using the GENERIC masks. The latter
also contain standard rights, which we don't need here. */
#define FILE_ALLOW_READ (FILE_READ_DATA | FILE_READ_ATTRIBUTES | \
FILE_READ_EA)
#define FILE_DENY_READ (FILE_READ_DATA | FILE_READ_EA)
#define FILE_ALLOW_WRITE (FILE_WRITE_DATA | FILE_WRITE_ATTRIBUTES | \
FILE_WRITE_EA | FILE_APPEND_DATA)
#define FILE_DENY_WRITE FILE_ALLOW_WRITE | FILE_DELETE_CHILD
#define FILE_DENY_WRITE_OWNER (FILE_WRITE_DATA | FILE_WRITE_EA | \
FILE_APPEND_DATA | FILE_DELETE_CHILD)
#define FILE_ALLOW_EXEC (FILE_EXECUTE)
#define FILE_DENY_EXEC FILE_ALLOW_EXEC
#define STD_RIGHTS_OTHER (STANDARD_RIGHTS_READ | SYNCHRONIZE)
#define STD_RIGHTS_OWNER (STANDARD_RIGHTS_ALL | SYNCHRONIZE)
/* From the attributes and the POSIX ACL list, compute a new-style Cygwin
security descriptor. The function returns a pointer to the
SECURITY_DESCRIPTOR in sd_ret, or NULL if the function fails.
This function *requires* a verified and sorted acl list! */
PSECURITY_DESCRIPTOR
set_posix_access (mode_t attr, uid_t uid, gid_t gid,
aclent_t *aclbufp, int nentries,
security_descriptor &sd_ret,
bool is_samba)
{
SECURITY_DESCRIPTOR sd;
cyg_ldap cldap;
PSID owner, group;
NTSTATUS status;
tmp_pathbuf tp;
cygpsid *aclsid;
PACL acl;
size_t acl_len = sizeof (ACL);
mode_t class_obj = 0, other_obj, group_obj, deny;
DWORD access;
int idx, start_idx, tmp_idx;
bool owner_eq_group = false;
bool dev_has_admins = false;
/* Initialize local security descriptor. */
RtlCreateSecurityDescriptor (&sd, SECURITY_DESCRIPTOR_REVISION);
/* As in alloc_sd, set SE_DACL_PROTECTED to prevent the DACL from being
modified by inheritable ACEs. */
RtlSetControlSecurityDescriptor (&sd, SE_DACL_PROTECTED, SE_DACL_PROTECTED);
/* Fetch owner and group and set in security descriptor. */
owner = sidfromuid (uid, &cldap);
group = sidfromgid (gid, &cldap);
if (!owner || !group)
{
set_errno (EINVAL);
return NULL;
}
status = RtlSetOwnerSecurityDescriptor (&sd, owner, FALSE);
if (!NT_SUCCESS (status))
{
__seterrno_from_nt_status (status);
return NULL;
}
status = RtlSetGroupSecurityDescriptor (&sd, group, FALSE);
if (!NT_SUCCESS (status))
{
__seterrno_from_nt_status (status);
return NULL;
}
owner_eq_group = RtlEqualSid (owner, group);
if (S_ISCHR (attr))
dev_has_admins = well_known_admins_sid == owner
|| well_known_admins_sid == group;
/* No POSIX ACL? Use attr to generate one from scratch. */
if (!aclbufp)
{
aclbufp = (aclent_t *) tp.c_get ();
aclbufp[0].a_type = USER_OBJ;
aclbufp[0].a_id = ILLEGAL_UID;
aclbufp[0].a_perm = (attr >> 6) & S_IRWXO;
aclbufp[1].a_type = GROUP_OBJ;
aclbufp[1].a_id = ILLEGAL_GID;
aclbufp[1].a_perm = (attr >> 3) & S_IRWXO;
aclbufp[2].a_type = OTHER_OBJ;
aclbufp[2].a_id = ILLEGAL_GID;
aclbufp[2].a_perm = attr & S_IRWXO;
nentries = MIN_ACL_ENTRIES;
if (S_ISDIR (attr))
{
aclbufp[3].a_type = DEF_USER_OBJ;
aclbufp[3].a_id = ILLEGAL_UID;
aclbufp[3].a_perm = (attr >> 6) & S_IRWXO;
aclbufp[4].a_type = GROUP_OBJ;
aclbufp[4].a_id = ILLEGAL_GID;
aclbufp[4].a_perm = (attr >> 3) & S_IRWXO;
aclbufp[5].a_type = OTHER_OBJ;
aclbufp[5].a_id = ILLEGAL_GID;
aclbufp[5].a_perm = attr & S_IRWXO;
nentries += MIN_ACL_ENTRIES;
}
}
/* Collect SIDs of all entries in aclbufp. */
aclsid = (cygpsid *) tp.w_get ();
for (idx = 0; idx < nentries; ++idx)
switch (aclbufp[idx].a_type)
{
case USER_OBJ:
aclsid[idx] = owner;
break;
case DEF_USER_OBJ:
aclsid[idx] = well_known_creator_owner_sid;
break;
case USER:
case DEF_USER:
aclsid[idx] = sidfromuid (aclbufp[idx].a_id, &cldap);
break;
case GROUP_OBJ:
aclsid[idx] = group;
break;
case DEF_GROUP_OBJ:
aclsid[idx] = !(attr & S_ISGID) ? (PSID) well_known_creator_group_sid
: group;
break;
case GROUP:
case DEF_GROUP:
aclsid[idx] = sidfromgid (aclbufp[idx].a_id, &cldap);
break;
case CLASS_OBJ:
case DEF_CLASS_OBJ:
aclsid[idx] = well_known_null_sid;
break;
case OTHER_OBJ:
case DEF_OTHER_OBJ:
aclsid[idx] = well_known_world_sid;
break;
}
/* Initialize ACL. */
acl = (PACL) tp.w_get ();
RtlCreateAcl (acl, ACL_MAXIMUM_SIZE, ACL_REVISION);
/* This loop has two runs, the first handling the actual permission,
the second handling the default permissions. */
idx = 0;
for (int def = 0; def <= ACL_DEFAULT; def += ACL_DEFAULT)
{
DWORD inherit = def ? SUB_CONTAINERS_AND_OBJECTS_INHERIT | INHERIT_ONLY
: NO_INHERITANCE;
/* No default ACEs on files. */
if (def && !S_ISDIR (attr))
{
/* Trying to set default ACEs on a non-directory is an error.
The underlying functions on Linux return EACCES. */
if (idx < nentries && aclbufp[idx].a_type & ACL_DEFAULT)
{
set_errno (EACCES);
return NULL;
}
break;
}
/* To compute deny access masks, we need group_obj, other_obj and... */
tmp_idx = searchace (aclbufp, nentries, def | GROUP_OBJ);
/* No default entries present? */
if (tmp_idx < 0)
break;
group_obj = aclbufp[tmp_idx].a_perm;
tmp_idx = searchace (aclbufp, nentries, def | OTHER_OBJ);
other_obj = aclbufp[tmp_idx].a_perm;
/* ... class_obj. Create Cygwin ACE. Only the S_ISGID attribute gets
inherited. */
access = CYG_ACE_ISBITS_TO_WIN (def ? attr & S_ISGID : attr)
| CYG_ACE_NEW_STYLE;
tmp_idx = searchace (aclbufp, nentries, def | CLASS_OBJ);
if (tmp_idx >= 0)
{
class_obj = aclbufp[tmp_idx].a_perm;
access |= CYG_ACE_MASK_TO_WIN (class_obj);
}
else
{
/* Setting class_obj to group_obj allows to write below code without
additional checks for existence of a CLASS_OBJ. */
class_obj = group_obj;
}
/* Note that Windows filters the ACE Mask value so it only reflects
the bit values supported by the object type. The result is that
we can't set a CLASS_OBJ value for ptys. The get_posix_access
function has to workaround that. */
if (!add_access_denied_ace (acl, access, well_known_null_sid, acl_len,
inherit))
return NULL;
/* Do we potentially chmod a file with owner SID == group SID? If so,
make sure the owner perms are always >= group perms. */
if (!def && owner_eq_group)
aclbufp[0].a_perm |= group_obj & class_obj;
/* This loop has two runs, the first w/ check_types == (USER_OBJ | USER),
the second w/ check_types == (GROUP_OBJ | GROUP). Each run creates
first the deny, then the allow ACEs for the current types. */
for (int check_types = USER_OBJ | USER;
check_types < CLASS_OBJ;
check_types <<= 2)
{
/* Create deny ACEs for users, then 1st run for groups. For groups,
only take CLASS_OBJ permissions into account. Class permissions
are handled in the 2nd deny loop below. */
for (start_idx = idx;
idx < nentries && aclbufp[idx].a_type & check_types;
++idx)
{
/* Avoid creating DENY ACEs for the second occurrence of
accounts which show up twice, as USER_OBJ and USER, or
GROUP_OBJ and GROUP. */
if ((aclbufp[idx].a_type & USER && aclsid[idx] == owner)
|| (aclbufp[idx].a_type & GROUP && aclsid[idx] == group))
continue;
/* For the rules how to construct the deny access mask, see the
comment right at the start of this file. */
if (aclbufp[idx].a_type & USER_OBJ)
deny = ~aclbufp[idx].a_perm & (class_obj | other_obj);
else if (aclbufp[idx].a_type & USER)
deny = (aclbufp[idx].a_perm & ~class_obj)
| (~aclbufp[idx].a_perm & other_obj);
/* Accommodate Windows: Only generate deny masks for SYSTEM
and the Administrators group in terms of the execute bit,
if they are not the primary group. */
else if (aclbufp[idx].a_type & GROUP
&& (aclsid[idx] == well_known_system_sid
|| aclsid[idx] == well_known_admins_sid))
deny = aclbufp[idx].a_perm & ~(class_obj | S_IROTH | S_IWOTH);
else
deny = (aclbufp[idx].a_perm & ~class_obj);
if (!deny)
continue;
access = 0;
if (deny & S_IROTH)
access |= FILE_DENY_READ;
if (deny & S_IWOTH)
access |= (aclbufp[idx].a_type & USER_OBJ)
? FILE_DENY_WRITE_OWNER : FILE_DENY_WRITE;
if (deny & S_IXOTH)
access |= FILE_DENY_EXEC;
if (!add_access_denied_ace (acl, access, aclsid[idx], acl_len,
inherit))
return NULL;
}
/* Create allow ACEs for users, then groups. */
for (idx = start_idx;
idx < nentries && aclbufp[idx].a_type & check_types;
++idx)
{
/* Don't set FILE_READ/WRITE_ATTRIBUTES unconditionally on Samba,
otherwise it enforces read permissions. */
access = STD_RIGHTS_OTHER | (is_samba ? 0 : FILE_READ_ATTRIBUTES);
if (aclbufp[idx].a_type & USER_OBJ)
{
access |= STD_RIGHTS_OWNER;
if (!is_samba)
access |= FILE_WRITE_ATTRIBUTES;
/* Set FILE_DELETE_CHILD on files with "rwx" perms for the
owner so that the owner gets "full control" (Duh). */
if (aclbufp[idx].a_perm == S_IRWXO)
access |= FILE_DELETE_CHILD;
}
if (aclbufp[idx].a_perm & S_IROTH)
access |= FILE_ALLOW_READ;
if (aclbufp[idx].a_perm & S_IWOTH)
access |= FILE_ALLOW_WRITE;
if (aclbufp[idx].a_perm & S_IXOTH)
access |= FILE_ALLOW_EXEC;
/* Handle S_ISVTX. */
if (S_ISDIR (attr)
&& (aclbufp[idx].a_perm & (S_IWOTH | S_IXOTH))
== (S_IWOTH | S_IXOTH)
&& (!(attr & S_ISVTX) || aclbufp[idx].a_type & USER_OBJ))
access |= FILE_DELETE_CHILD;
/* For ptys, make sure the Administrators group has WRITE_DAC
and WRITE_OWNER perms. */
if (dev_has_admins && aclsid[idx] == well_known_admins_sid)
access |= STD_RIGHTS_OWNER;
if (!add_access_allowed_ace (acl, access, aclsid[idx], acl_len,
inherit))
return NULL;
}
/* 2nd deny loop: Create deny ACEs for groups when they have less
permissions than OTHER_OBJ. */
if (check_types == (GROUP_OBJ | GROUP))
for (idx = start_idx;
idx < nentries && aclbufp[idx].a_type & check_types;
++idx)
{
if (aclbufp[idx].a_type & GROUP && aclsid[idx] == group)
continue;
/* Only generate deny masks for SYSTEM and the Administrators
group if they are the primary group. */
if (aclbufp[idx].a_type & GROUP
&& (aclsid[idx] == well_known_system_sid
|| aclsid[idx] == well_known_admins_sid))
deny = 0;
else
deny = (~aclbufp[idx].a_perm & other_obj);
if (!deny)
continue;
access = 0;
if (deny & S_IROTH)
access |= FILE_DENY_READ;
if (deny & S_IWOTH)
access |= FILE_DENY_WRITE;
if (deny & S_IXOTH)
access |= FILE_DENY_EXEC;
if (!add_access_denied_ace (acl, access, aclsid[idx], acl_len,
inherit))
return NULL;
}
}
/* For ptys if the admins group isn't in the ACL, add an ACE to make
sure the group has WRITE_DAC and WRITE_OWNER perms. */
if (S_ISCHR (attr) && !dev_has_admins
&& !add_access_allowed_ace (acl,
STD_RIGHTS_OWNER | FILE_ALLOW_READ
| FILE_ALLOW_WRITE,
well_known_admins_sid, acl_len,
NO_INHERITANCE))
return NULL;
/* Create allow ACE for other. It's preceeded by class_obj if it exists.
If so, skip it. */
if (aclbufp[idx].a_type & CLASS_OBJ)
++idx;
access = STD_RIGHTS_OTHER | (is_samba ? 0 : FILE_READ_ATTRIBUTES);
if (aclbufp[idx].a_perm & S_IROTH)
access |= FILE_ALLOW_READ;
if (aclbufp[idx].a_perm & S_IWOTH)
access |= FILE_ALLOW_WRITE;
if (aclbufp[idx].a_perm & S_IXOTH)
access |= FILE_ALLOW_EXEC;
/* Handle S_ISVTX. */
if (S_ISDIR (attr)
&& (aclbufp[idx].a_perm & (S_IWOTH | S_IXOTH)) == (S_IWOTH | S_IXOTH)
&& !(attr & S_ISVTX))
access |= FILE_DELETE_CHILD;
if (!add_access_allowed_ace (acl, access, aclsid[idx++], acl_len,
inherit))
return NULL;
}
/* Set AclSize to computed value. */
acl->AclSize = acl_len;
debug_printf ("ACL-Size: %u", acl_len);
/* Create DACL for local security descriptor. */
status = RtlSetDaclSecurityDescriptor (&sd, TRUE, acl, FALSE);
if (!NT_SUCCESS (status))
{
__seterrno_from_nt_status (status);
return NULL;
}
/* Make self relative security descriptor in sd_ret. */
DWORD sd_size = 0;
RtlAbsoluteToSelfRelativeSD (&sd, sd_ret, &sd_size);
if (sd_size <= 0)
{
__seterrno ();
return NULL;
}
if (!sd_ret.realloc (sd_size))
{
set_errno (ENOMEM);
return NULL;
}
status = RtlAbsoluteToSelfRelativeSD (&sd, sd_ret, &sd_size);
if (!NT_SUCCESS (status))
{
__seterrno_from_nt_status (status);
return NULL;
}
debug_printf ("Created SD-Size: %u", sd_ret.size ());
return sd_ret;
}
/* This function *requires* a verified and sorted acl list! */
int
setacl (HANDLE handle, path_conv &pc, int nentries, aclent_t *aclbufp,
bool &writable)
{
security_descriptor sd, sd_ret;
mode_t attr = pc.isdir () ? S_IFDIR : 0;
uid_t uid;
gid_t gid;
if (get_file_sd (handle, pc, sd, false))
return -1;
if (get_posix_access (sd, &attr, &uid, &gid, NULL, 0) < 0)
return -1;
if (!set_posix_access (attr, uid, gid, aclbufp, nentries,
sd_ret, pc.fs_is_samba ()))
return -1;
/* FIXME? Caller needs to know if any write perms are set to allow removing
the DOS R/O bit. */
writable = true;
return set_file_sd (handle, pc, sd_ret, false);
}
/* Temporary access denied bits used by getace and get_posix_access during
Windows ACL processing. These bits get removed before the created POSIX
ACL gets published. */
#define DENY_R 040000
#define DENY_W 020000
#define DENY_X 010000
#define DENY_RWX (DENY_R | DENY_W | DENY_X)
/* New style ACL means, just read the bits and store them away. Don't
create masked values on your own. */
static void
getace (aclent_t &acl, int type, int id, DWORD win_ace_mask,
DWORD win_ace_type, bool new_style)
{
acl.a_type = type;
acl.a_id = id;
if ((win_ace_mask & FILE_READ_BITS)
&& (new_style || !(acl.a_perm & (S_IROTH | DENY_R))))
{
if (win_ace_type == ACCESS_ALLOWED_ACE_TYPE)
acl.a_perm |= S_IROTH;
else if (win_ace_type == ACCESS_DENIED_ACE_TYPE)
acl.a_perm |= DENY_R;
}
if ((win_ace_mask & FILE_WRITE_BITS)
&& (new_style || !(acl.a_perm & (S_IWOTH | DENY_W))))
{
if (win_ace_type == ACCESS_ALLOWED_ACE_TYPE)
acl.a_perm |= S_IWOTH;
else if (win_ace_type == ACCESS_DENIED_ACE_TYPE)
acl.a_perm |= DENY_W;
}
if ((win_ace_mask & FILE_EXEC_BITS)
&& (new_style || !(acl.a_perm & (S_IXOTH | DENY_X))))
{
if (win_ace_type == ACCESS_ALLOWED_ACE_TYPE)
acl.a_perm |= S_IXOTH;
else if (win_ace_type == ACCESS_DENIED_ACE_TYPE)
acl.a_perm |= DENY_X;
}
}
/* From the SECURITY_DESCRIPTOR given in psd, compute user, owner, posix
attributes, as well as the POSIX acl. The function returns the number
of entries returned in aclbufp, or -1 in case of error. */
int
get_posix_access (PSECURITY_DESCRIPTOR psd,
mode_t *attr_ret, uid_t *uid_ret, gid_t *gid_ret,
aclent_t *aclbufp, int nentries)
{
tmp_pathbuf tp;
NTSTATUS status;
BOOLEAN dummy, acl_exists;
SECURITY_DESCRIPTOR_CONTROL ctrl;
ULONG rev;
PACL acl;
PACCESS_ALLOWED_ACE ace;
cygpsid owner_sid, group_sid;
cyg_ldap cldap;
uid_t uid;
gid_t gid;
mode_t attr = 0;
aclent_t *lacl = NULL;
cygpsid ace_sid, *aclsid;
int pos, type, id, idx;
bool owner_eq_group;
bool just_created = false;
bool standard_ACEs_only = true;
bool new_style = false;
bool saw_user_obj = false;
bool saw_group_obj = false;
bool saw_other_obj = false;
bool saw_def_user_obj = false;
bool saw_def_group_obj = false;
bool has_class_perm = false;
bool has_def_class_perm = false;
mode_t class_perm = 0;
mode_t def_class_perm = 0;
int types_def = 0;
int def_pgrp_pos = -1;
if (aclbufp && nentries < MIN_ACL_ENTRIES)
{
set_errno (EINVAL);
return -1;
}
/* If reading the security descriptor failed, treat the object as
unreadable. */
if (!psd)
{
if (attr_ret)
*attr_ret &= S_IFMT;
if (uid_ret)
*uid_ret = ILLEGAL_UID;
if (gid_ret)
*gid_ret = ILLEGAL_GID;
if (aclbufp)
{
aclbufp[0].a_type = USER_OBJ;
aclbufp[0].a_id = ILLEGAL_UID;
aclbufp[0].a_perm = 0;
aclbufp[1].a_type = GROUP_OBJ;
aclbufp[1].a_id = ILLEGAL_GID;
aclbufp[1].a_perm = 0;
aclbufp[2].a_type = OTHER_OBJ;
aclbufp[2].a_id = ILLEGAL_GID;
aclbufp[2].a_perm = 0;
return MIN_ACL_ENTRIES;
}
return 0;
}
/* Fetch owner, group, and ACL from security descriptor. */
status = RtlGetOwnerSecurityDescriptor (psd, (PSID *) &owner_sid, &dummy);
if (!NT_SUCCESS (status))
{
__seterrno_from_nt_status (status);
return -1;
}
status = RtlGetGroupSecurityDescriptor (psd, (PSID *) &group_sid, &dummy);
if (!NT_SUCCESS (status))
{
__seterrno_from_nt_status (status);
return -1;
}
status = RtlGetDaclSecurityDescriptor (psd, &acl_exists, &acl, &dummy);
if (!NT_SUCCESS (status))
{
__seterrno_from_nt_status (status);
return -1;
}
/* Set uidret, gidret, and initalize attributes. */
uid = owner_sid.get_uid (&cldap);
gid = group_sid.get_gid (&cldap);
if (attr_ret)
{
attr = *attr_ret & S_IFMT;
just_created = *attr_ret & S_JUSTCREATED;
}
/* Remember the fact that owner and group are the same account. */
owner_eq_group = owner_sid == group_sid;
/* Create and initialize local aclent_t array. */
lacl = (aclent_t *) tp.c_get ();
memset (lacl, 0, MAX_ACL_ENTRIES * sizeof (aclent_t *));
lacl[0].a_type = USER_OBJ;
lacl[0].a_id = uid;
lacl[1].a_type = GROUP_OBJ;
lacl[1].a_id = gid;
lacl[2].a_type = OTHER_OBJ;
lacl[2].a_id = ILLEGAL_GID;
/* Create array to collect SIDs of all entries in lacl. */
aclsid = (cygpsid *) tp.w_get ();
aclsid[0] = owner_sid;
aclsid[1] = group_sid;
aclsid[2] = well_known_world_sid;
/* No ACEs? Everybody has full access. */
if (!acl_exists || !acl || acl->AceCount == 0)
{
for (pos = 0; pos < MIN_ACL_ENTRIES; ++pos)
lacl[pos].a_perm = S_IROTH | S_IWOTH | S_IXOTH;
goto out;
}
/* Files and dirs are created with a NULL descriptor, so inheritence
rules kick in. If no inheritable entries exist in the parent object,
Windows will create entries according to the user token's default DACL.
These entries are not desired and we ignore them at creation time.
We're just checking the SE_DACL_AUTO_INHERITED flag here, since that's
what we set in get_file_sd. Read the longish comment there before
changing this test! */
if (just_created
&& NT_SUCCESS (RtlGetControlSecurityDescriptor (psd, &ctrl, &rev))
&& !(ctrl & SE_DACL_AUTO_INHERITED))
;
else for (idx = 0; idx < acl->AceCount; ++idx)
{
if (!NT_SUCCESS (RtlGetAce (acl, idx, (PVOID *) &ace)))
continue;
ace_sid = (PSID) &ace->SidStart;
if (ace_sid == well_known_null_sid)
{
/* Fetch special bits. */
attr |= CYG_ACE_ISBITS_TO_POSIX (ace->Mask);
if (ace->Header.AceType == ACCESS_DENIED_ACE_TYPE
&& ace->Mask & CYG_ACE_NEW_STYLE)
{
/* New-style ACL. Note the fact that a mask value is present
since that changes how getace fetches the information. That's
fine, because the Cygwin SID ACE is supposed to precede all
USER, GROUP and GROUP_OBJ entries. Any ACL not created that
way has been rearranged by the Windows functionality to create
the brain-dead "canonical" ACL order and is broken anyway. */
new_style = true;
attr |= CYG_ACE_ISBITS_TO_POSIX (ace->Mask);
if (ace->Mask & CYG_ACE_MASK_VALID)
{
if (!(ace->Header.AceFlags & INHERIT_ONLY))
{
if ((pos = searchace (lacl, MAX_ACL_ENTRIES, CLASS_OBJ))
>= 0)
{
lacl[pos].a_type = CLASS_OBJ;
lacl[pos].a_id = ILLEGAL_GID;
lacl[pos].a_perm = CYG_ACE_MASK_TO_POSIX (ace->Mask);
aclsid[pos] = well_known_null_sid;
}
has_class_perm = true;
class_perm = lacl[pos].a_perm;
}
if (ace->Header.AceFlags & SUB_CONTAINERS_AND_OBJECTS_INHERIT)
{
if ((pos = searchace (lacl, MAX_ACL_ENTRIES,
DEF_CLASS_OBJ)) >= 0)
{
lacl[pos].a_type = DEF_CLASS_OBJ;
lacl[pos].a_id = ILLEGAL_GID;
lacl[pos].a_perm = CYG_ACE_MASK_TO_POSIX (ace->Mask);
aclsid[pos] = well_known_null_sid;
}
has_def_class_perm = true;
def_class_perm = lacl[pos].a_perm;
}
}
}
continue;
}
if (ace_sid == owner_sid)
{
type = USER_OBJ;
id = uid;
}
else if (ace_sid == group_sid)
{
type = GROUP_OBJ;
id = gid;
}
else if (ace_sid == well_known_world_sid)
{
type = OTHER_OBJ;
id = ILLEGAL_GID;
if (ace->Header.AceType == ACCESS_ALLOWED_ACE_TYPE
&& !(ace->Header.AceFlags & INHERIT_ONLY))
saw_other_obj = true;
}
else if (ace_sid == well_known_creator_owner_sid)
{
type = DEF_USER_OBJ;
types_def |= type;
id = ILLEGAL_GID;
saw_def_user_obj = true;
}
else if (ace_sid == well_known_creator_group_sid)
{
type = DEF_GROUP_OBJ;
types_def |= type;
id = ILLEGAL_GID;
saw_def_group_obj = true;
}
else
{
id = ace_sid.get_id (TRUE, &type, &cldap);
if (!type)
continue;
}
/* If the SGID attribute is set on a just created file or dir, the
first group in the ACL is the desired primary group of the new
object. Alternatively, the first repetition of the owner SID is
the desired primary group, and we mark the object as owner_eq_group
object. */
if (just_created && attr & S_ISGID && !saw_group_obj
&& (type == GROUP || (type == USER_OBJ && saw_user_obj)))
{
type = GROUP_OBJ;
lacl[1].a_id = gid = id;
owner_eq_group = true;
}
if (!(ace->Header.AceFlags & INHERIT_ONLY || type & ACL_DEFAULT))
{
if (type == USER_OBJ)
{
/* If we get a second entry for the owner SID, it's either a
GROUP_OBJ entry for the same SID, if owner SID == group SID,
or it's an additional USER entry. The latter can happen
when chown'ing a file. */
if (saw_user_obj)
{
if (owner_eq_group && !saw_group_obj)
{
type = GROUP_OBJ;
/* Gid and uid are not necessarily the same even if the
SID is the same: /etc/group is in use and the user got
added to /etc/group using another gid than the uid.
This is a border case but it happened and resetting id
to gid is not much of a burden. */
id = gid;
if (ace->Header.AceType == ACCESS_ALLOWED_ACE_TYPE)
saw_group_obj = true;
}
else
type = USER;
}
else if (ace->Header.AceType == ACCESS_ALLOWED_ACE_TYPE)
saw_user_obj = true;
}
else if (type == GROUP_OBJ)
{
/* Same for the primary group. */
if (saw_group_obj)
type = GROUP;
if (ace->Header.AceType == ACCESS_ALLOWED_ACE_TYPE)
saw_group_obj = true;
}
if ((pos = searchace (lacl, MAX_ACL_ENTRIES, type, id)) >= 0)
{
getace (lacl[pos], type, id, ace->Mask, ace->Header.AceType,
new_style && type & (USER | GROUP_OBJ | GROUP));
aclsid[pos] = ace_sid;
if (!new_style)
{
/* Fix up CLASS_OBJ value. */
if (type & (USER | GROUP))
{
has_class_perm = true;
/* Accommodate Windows: Never add SYSTEM and Admins to
CLASS_OBJ. Unless (implicitly) if they are the
GROUP_OBJ entry. */
if (ace_sid != well_known_system_sid
&& ace_sid != well_known_admins_sid)
class_perm |= lacl[pos].a_perm;
}
}
/* For a newly created file, we'd like to know if we're running
with a standard ACL, one only consisting of POSIX perms, plus
SYSTEM and Admins as maximum non-POSIX perms entries. If it's
a standard ACL, we apply umask. That's not entirely correct,
but it's probably the best we can do. */
else if (type & (USER | GROUP)
&& just_created
&& standard_ACEs_only
&& ace_sid != well_known_system_sid
&& ace_sid != well_known_admins_sid)
standard_ACEs_only = false;
}
}
if ((ace->Header.AceFlags & SUB_CONTAINERS_AND_OBJECTS_INHERIT))
{
if (type == USER_OBJ)
{
/* As above: If we get a second entry for the owner SID, it's
a GROUP_OBJ entry for the same SID if owner SID == group SID,
but this time only if the S_ISGID bit is set. Otherwise it's
an additional USER entry. */
if (saw_def_user_obj)
{
if (owner_eq_group && !saw_def_group_obj && attr & S_ISGID)
{
/* This needs post-processing in the following GROUP_OBJ
handling... Set id to ILLEGAL_GID to play it safe. */
type = GROUP_OBJ;
id = ILLEGAL_GID;
}
else
type = USER;
}
else if (ace->Header.AceType == ACCESS_ALLOWED_ACE_TYPE)
saw_def_user_obj = true;
}
if (type == GROUP_OBJ)
{
/* If the SGID bit is set, the inheritable entry for the
primary group is, in fact, the DEF_GROUP_OBJ entry,
so don't change the type to GROUP in this case. */
if (!new_style || saw_def_group_obj || !(attr & S_ISGID))
type = GROUP;
else if (ace->Header.AceType == ACCESS_ALLOWED_ACE_TYPE)
saw_def_group_obj = true;
}
type |= ACL_DEFAULT;
types_def |= type;
if ((pos = searchace (lacl, MAX_ACL_ENTRIES, type, id)) >= 0)
{
getace (lacl[pos], type, id, ace->Mask, ace->Header.AceType,
new_style && type & (USER | GROUP_OBJ | GROUP));
aclsid[pos] = ace_sid;
if (!new_style)
{
/* Fix up DEF_CLASS_OBJ value. */
if (type & (USER | GROUP))
{
has_def_class_perm = true;
/* Accommodate Windows: Never add SYSTEM and Admins to
CLASS_OBJ. Unless (implicitly) if they are the
GROUP_OBJ entry. */
if (ace_sid != well_known_system_sid
&& ace_sid != well_known_admins_sid)
def_class_perm |= lacl[pos].a_perm;
}
/* And note the position of the DEF_GROUP_OBJ entry. */
if (type == DEF_GROUP_OBJ)
def_pgrp_pos = pos;
}
}
}
}
/* If this is an old-style or non-Cygwin ACL, and secondary user and group
entries exist in the ACL, fake a matching CLASS_OBJ entry. The CLASS_OBJ
permissions are the or'ed permissions of the primary group permissions
and all secondary user and group permissions. */
if (!new_style && has_class_perm
&& (pos = searchace (lacl, MAX_ACL_ENTRIES, 0)) >= 0)
{
lacl[pos].a_type = CLASS_OBJ;
lacl[pos].a_id = ILLEGAL_GID;
class_perm |= lacl[1].a_perm;
lacl[pos].a_perm = class_perm;
aclsid[pos] = well_known_null_sid;
}
/* For ptys, fake a mask if the admins group is neither owner nor group.
In that case we have an extra ACE for the admins group, and we need a
CLASS_OBJ to get a valid POSIX ACL. However, Windows filters the ACE
Mask value so it only reflects the bit values supported by the object
type. The result is that we can't set an explicit CLASS_OBJ value for
ptys in the NULL SID ACE. */
else if (S_ISCHR (attr) && owner_sid != well_known_admins_sid
&& group_sid != well_known_admins_sid
&& (pos = searchace (lacl, MAX_ACL_ENTRIES, CLASS_OBJ)) >= 0)
{
lacl[pos].a_type = CLASS_OBJ;
lacl[pos].a_id = ILLEGAL_GID;
lacl[pos].a_perm = lacl[1].a_perm; /* == group perms */
aclsid[pos] = well_known_null_sid;
}
/* If this is a just created file, and this is an ACL with only standard
entries, or if standard POSIX permissions are missing (probably no
inherited ACEs so created from a default DACL), assign the permissions
specified by the file creation mask. The values get masked by the
actually requested permissions by the caller per POSIX 1003.1e draft 17. */
if (just_created)
{
mode_t perms = (S_IRWXU | S_IRWXG | S_IRWXO) & ~cygheap->umask;
if (standard_ACEs_only || !saw_user_obj)
lacl[0].a_perm = (perms >> 6) & S_IRWXO;
if (standard_ACEs_only || !saw_group_obj)
lacl[1].a_perm = (perms >> 3) & S_IRWXO;
if (standard_ACEs_only || !saw_other_obj)
lacl[2].a_perm = perms & S_IRWXO;
}
/* Ensure that the default acl contains at least
DEF_(USER|GROUP|OTHER)_OBJ entries. */
if (types_def && (pos = searchace (lacl, MAX_ACL_ENTRIES, 0)) >= 0)
{
if (!(types_def & USER_OBJ))
{
lacl[pos].a_type = DEF_USER_OBJ;
lacl[pos].a_id = uid;
lacl[pos].a_perm = lacl[0].a_perm;
aclsid[pos] = well_known_creator_owner_sid;
pos++;
}
if (!(types_def & GROUP_OBJ) && pos < MAX_ACL_ENTRIES)
{
lacl[pos].a_type = DEF_GROUP_OBJ;
lacl[pos].a_id = gid;
lacl[pos].a_perm = lacl[1].a_perm;
/* Note the position of the DEF_GROUP_OBJ entry. */
def_pgrp_pos = pos;
aclsid[pos] = well_known_creator_group_sid;
pos++;
}
if (!(types_def & OTHER_OBJ) && pos < MAX_ACL_ENTRIES)
{
lacl[pos].a_type = DEF_OTHER_OBJ;
lacl[pos].a_id = ILLEGAL_GID;
lacl[pos].a_perm = lacl[2].a_perm;
aclsid[pos] = well_known_world_sid;
pos++;
}
}
/* If this is an old-style or non-Cygwin ACL, and secondary user default
and group default entries exist in the ACL, fake a matching DEF_CLASS_OBJ
entry. The DEF_CLASS_OBJ permissions are the or'ed permissions of the
primary group default permissions and all secondary user and group def.
permissions. */
if (!new_style && has_def_class_perm
&& (pos = searchace (lacl, MAX_ACL_ENTRIES, 0)) >= 0)
{
lacl[pos].a_type = DEF_CLASS_OBJ;
lacl[pos].a_id = ILLEGAL_GID;
lacl[pos].a_perm = def_class_perm;
if (def_pgrp_pos >= 0)
lacl[pos].a_perm |= lacl[def_pgrp_pos].a_perm;
aclsid[pos] = well_known_null_sid;
}
/* Make sure `pos' contains the number of used entries in lacl. */
if ((pos = searchace (lacl, MAX_ACL_ENTRIES, 0)) < 0)
pos = MAX_ACL_ENTRIES;
/* For old-style or non-Cygwin ACLs, check for merging permissions. */
if (!new_style)
for (idx = 0; idx < pos; ++idx)
{
if (lacl[idx].a_type & (USER_OBJ | USER)
&& !(lacl[idx].a_type & ACL_DEFAULT))
{
mode_t perm;
/* Don't merge if the user already has all permissions, or... */
if (lacl[idx].a_perm == S_IRWXO)
continue;
/* ...if the sum of perms is less than or equal the user's perms. */
perm = lacl[idx].a_perm
| (has_class_perm ? class_perm : lacl[1].a_perm)
| lacl[2].a_perm;
if (perm == lacl[idx].a_perm)
continue;
/* Otherwise, if we use the Windows user DB, utilize Authz to make
sure all user permissions are correctly reflecting the Windows
permissions. */
if (cygheap->pg.nss_pwd_db ()
&& authz_get_user_attribute (&perm, psd, aclsid[idx]))
lacl[idx].a_perm = perm;
/* Otherwise we only check the current user. If the user entry
has a deny ACE, don't check. */
else if (lacl[idx].a_id == myself->uid
&& !(lacl[idx].a_perm & DENY_RWX))
{
/* Sum up all permissions of groups the user is member of, plus
everyone perms, and merge them to user perms. */
BOOL ret;
perm = lacl[2].a_perm & S_IRWXO;
for (int gidx = 1; gidx < pos; ++gidx)
if (lacl[gidx].a_type & (GROUP_OBJ | GROUP)
&& CheckTokenMembership (cygheap->user.issetuid ()
? cygheap->user.imp_token () : NULL,
aclsid[gidx], &ret)
&& ret)
perm |= lacl[gidx].a_perm & S_IRWXO;
lacl[idx].a_perm |= perm;
}
}
/* For all groups, if everyone has more permissions, add everyone
perms to group perms. Skip groups with deny ACE. */
else if (lacl[idx].a_id & (GROUP_OBJ | GROUP)
&& !(lacl[idx].a_type & ACL_DEFAULT)
&& !(lacl[idx].a_perm & DENY_RWX))
lacl[idx].a_perm |= lacl[2].a_perm & S_IRWXO;
}
/* If owner SID == group SID (Microsoft Accounts) merge group perms into
user perms but leave group perms intact. That's a fake, but it allows
to keep track of the POSIX group perms without much effort. */
if (owner_eq_group)
lacl[0].a_perm |= lacl[1].a_perm;
/* Construct POSIX permission bits. Fortunately we know exactly where
to fetch the affecting bits from, at least as long as the array
hasn't been sorted. */
attr |= (lacl[0].a_perm & S_IRWXO) << 6;
attr |= (has_class_perm ? class_perm : (lacl[1].a_perm & S_IRWXO)) << 3;
attr |= (lacl[2].a_perm & S_IRWXO);
out:
if (uid_ret)
*uid_ret = uid;
if (gid_ret)
*gid_ret = gid;
if (attr_ret)
*attr_ret = attr;
if (aclbufp)
{
if (pos > nentries)
{
set_errno (ENOSPC);
return -1;
}
memcpy (aclbufp, lacl, pos * sizeof (aclent_t));
for (idx = 0; idx < pos; ++idx)
aclbufp[idx].a_perm &= S_IRWXO;
aclsort32 (pos, 0, aclbufp);
}
return pos;
}
int
getacl (HANDLE handle, path_conv &pc, int nentries, aclent_t *aclbufp)
{
security_descriptor sd;
if (get_file_sd (handle, pc, sd, false))
return -1;
int pos = get_posix_access (sd, NULL, NULL, NULL, aclbufp, nentries);
syscall_printf ("%R = getacl(%S)", pos, pc.get_nt_native_path ());
return pos;
}
extern "C" int
acl32 (const char *path, int cmd, int nentries, aclent_t *aclbufp)
{
int res = -1;
fhandler_base *fh = build_fh_name (path, PC_SYM_FOLLOW | PC_KEEP_HANDLE,
stat_suffixes);
if (!fh || !fh->exists ())
set_errno (ENOENT);
else if (fh->error ())
{
debug_printf ("got %d error from build_fh_name", fh->error ());
set_errno (fh->error ());
}
else
res = fh->facl (cmd, nentries, aclbufp);
delete fh;
syscall_printf ("%R = acl(%s)", res, path);
return res;
}
#ifndef __x86_64__
extern "C" int
lacl32 (const char *path, int cmd, int nentries, aclent_t *aclbufp)
{
/* This call was an accident. Make it absolutely clear. */
set_errno (ENOSYS);
return -1;
}
#endif
extern "C" int
facl32 (int fd, int cmd, int nentries, aclent_t *aclbufp)
{
cygheap_fdget cfd (fd);
if (cfd < 0)
{
syscall_printf ("-1 = facl (%d)", fd);
return -1;
}
int res = cfd->facl (cmd, nentries, aclbufp);
syscall_printf ("%R = facl(%s) )", res, cfd->get_name ());
return res;
}
extern "C" int
aclcheck32 (aclent_t *aclbufp, int nentries, int *which)
{
bool has_user_obj = false;
bool has_group_obj = false;
bool has_other_obj = false;
bool has_class_obj = false;
bool has_ug_objs __attribute__ ((unused)) = false;
bool has_def_objs __attribute__ ((unused)) = false;
bool has_def_user_obj __attribute__ ((unused)) = false;
bool has_def_group_obj = false;
bool has_def_other_obj = false;
bool has_def_class_obj = false;
bool has_def_ug_objs __attribute__ ((unused)) = false;
int pos2;
for (int pos = 0; pos < nentries; ++pos)
switch (aclbufp[pos].a_type)
{
case USER_OBJ:
if (has_user_obj)
{
if (which)
*which = pos;
return USER_ERROR;
}
has_user_obj = true;
break;
case GROUP_OBJ:
if (has_group_obj)
{
if (which)
*which = pos;
return GRP_ERROR;
}
has_group_obj = true;
break;
case OTHER_OBJ:
if (has_other_obj)
{
if (which)
*which = pos;
return OTHER_ERROR;
}
has_other_obj = true;
break;
case CLASS_OBJ:
if (has_class_obj)
{
if (which)
*which = pos;
return CLASS_ERROR;
}
has_class_obj = true;
break;
case USER:
case GROUP:
if ((pos2 = searchace (aclbufp + pos + 1, nentries - pos - 1,
aclbufp[pos].a_type, aclbufp[pos].a_id)) >= 0)
{
if (which)
*which = pos2;
return DUPLICATE_ERROR;
}
has_ug_objs = true;
break;
case DEF_USER_OBJ:
if (has_def_user_obj)
{
if (which)
*which = pos;
return USER_ERROR;
}
has_def_objs = has_def_user_obj = true;
break;
case DEF_GROUP_OBJ:
if (has_def_group_obj)
{
if (which)
*which = pos;
return GRP_ERROR;
}
has_def_objs = has_def_group_obj = true;
break;
case DEF_OTHER_OBJ:
if (has_def_other_obj)
{
if (which)
*which = pos;
return OTHER_ERROR;
}
has_def_objs = has_def_other_obj = true;
break;
case DEF_CLASS_OBJ:
if (has_def_class_obj)
{
if (which)
*which = pos;
return CLASS_ERROR;
}
has_def_objs = has_def_class_obj = true;
break;
case DEF_USER:
case DEF_GROUP:
if ((pos2 = searchace (aclbufp + pos + 1, nentries - pos - 1,
aclbufp[pos].a_type, aclbufp[pos].a_id)) >= 0)
{
if (which)
*which = pos2;
return DUPLICATE_ERROR;
}
has_def_objs = has_def_ug_objs = true;
break;
default:
return ENTRY_ERROR;
}
if (!has_user_obj
|| !has_group_obj
|| !has_other_obj
|| (has_def_objs
&& (!has_def_user_obj || !has_def_group_obj || !has_def_other_obj))
|| (has_ug_objs && !has_class_obj)
|| (has_def_ug_objs && !has_def_class_obj)
)
{
if (which)
*which = -1;
return MISS_ERROR;
}
return 0;
}
static int
acecmp (const void *a1, const void *a2)
{
#define ace(i) ((const aclent_t *) a##i)
int ret = ace (1)->a_type - ace (2)->a_type;
if (!ret)
ret = ace (1)->a_id - ace (2)->a_id;
return ret;
#undef ace
}
extern "C" int
aclsort32 (int nentries, int, aclent_t *aclbufp)
{
if (aclcheck32 (aclbufp, nentries, NULL))
{
set_errno (EINVAL);
return -1;
}
if (!aclbufp || nentries < 1)
{
set_errno (EINVAL);
return -1;
}
qsort ((void *) aclbufp, nentries, sizeof (aclent_t), acecmp);
return 0;
}
extern "C" int
acltomode32 (aclent_t *aclbufp, int nentries, mode_t *modep)
{
int pos;
if (!aclbufp || nentries < 1 || !modep)
{
set_errno (EINVAL);
return -1;
}
*modep = 0;
if ((pos = searchace (aclbufp, nentries, USER_OBJ)) < 0
|| !aclbufp[pos].a_type)
{
set_errno (EINVAL);
return -1;
}
*modep |= (aclbufp[pos].a_perm & S_IRWXO) << 6;
if ((pos = searchace (aclbufp, nentries, GROUP_OBJ)) < 0
|| !aclbufp[pos].a_type)
{
set_errno (EINVAL);
return -1;
}
*modep |= (aclbufp[pos].a_perm & S_IRWXO) << 3;
int cpos;
if ((cpos = searchace (aclbufp, nentries, CLASS_OBJ)) >= 0
&& aclbufp[cpos].a_type == CLASS_OBJ)
*modep |= ((aclbufp[pos].a_perm & S_IRWXO) & aclbufp[cpos].a_perm) << 3;
if ((pos = searchace (aclbufp, nentries, OTHER_OBJ)) < 0
|| !aclbufp[pos].a_type)
{
set_errno (EINVAL);
return -1;
}
*modep |= aclbufp[pos].a_perm & S_IRWXO;
return 0;
}
extern "C" int
aclfrommode32 (aclent_t *aclbufp, int nentries, mode_t *modep)
{
int pos;
if (!aclbufp || nentries < 1 || !modep)
{
set_errno (EINVAL);
return -1;
}
if ((pos = searchace (aclbufp, nentries, USER_OBJ)) < 0
|| !aclbufp[pos].a_type)
{
set_errno (EINVAL);
return -1;
}
aclbufp[pos].a_perm = (*modep & S_IRWXU) >> 6;
if ((pos = searchace (aclbufp, nentries, GROUP_OBJ)) < 0
|| !aclbufp[pos].a_type)
{
set_errno (EINVAL);
return -1;
}
aclbufp[pos].a_perm = (*modep & S_IRWXG) >> 3;
if ((pos = searchace (aclbufp, nentries, CLASS_OBJ)) >= 0
&& aclbufp[pos].a_type == CLASS_OBJ)
aclbufp[pos].a_perm = (*modep & S_IRWXG) >> 3;
if ((pos = searchace (aclbufp, nentries, OTHER_OBJ)) < 0
|| !aclbufp[pos].a_type)
{
set_errno (EINVAL);
return -1;
}
aclbufp[pos].a_perm = (*modep & S_IRWXO);
return 0;
}
extern "C" int
acltopbits32 (aclent_t *aclbufp, int nentries, mode_t *pbitsp)
{
return acltomode32 (aclbufp, nentries, pbitsp);
}
extern "C" int
aclfrompbits32 (aclent_t *aclbufp, int nentries, mode_t *pbitsp)
{
return aclfrommode32 (aclbufp, nentries, pbitsp);
}
static char *
permtostr (mode_t perm)
{
static char pbuf[4];
pbuf[0] = (perm & S_IROTH) ? 'r' : '-';
pbuf[1] = (perm & S_IWOTH) ? 'w' : '-';
pbuf[2] = (perm & S_IXOTH) ? 'x' : '-';
pbuf[3] = '\0';
return pbuf;
}
extern "C" char *
acltotext32 (aclent_t *aclbufp, int aclcnt)
{
if (!aclbufp || aclcnt < 1 || aclcnt > MAX_ACL_ENTRIES
|| aclcheck32 (aclbufp, aclcnt, NULL))
{
set_errno (EINVAL);
return NULL;
}
char buf[32000];
buf[0] = '\0';
bool first = true;
for (int pos = 0; pos < aclcnt; ++pos)
{
if (!first)
strcat (buf, ",");
first = false;
if (aclbufp[pos].a_type & ACL_DEFAULT)
strcat (buf, "default");
switch (aclbufp[pos].a_type & ~ACL_DEFAULT)
{
case USER_OBJ:
__small_sprintf (buf + strlen (buf), "user::%s",
permtostr (aclbufp[pos].a_perm));
break;
case USER:
__small_sprintf (buf + strlen (buf), "user:%d:%s",
aclbufp[pos].a_id, permtostr (aclbufp[pos].a_perm));
break;
case GROUP_OBJ:
__small_sprintf (buf + strlen (buf), "group::%s",
permtostr (aclbufp[pos].a_perm));
break;
case GROUP:
__small_sprintf (buf + strlen (buf), "group:%d:%s",
aclbufp[pos].a_id, permtostr (aclbufp[pos].a_perm));
break;
case CLASS_OBJ:
__small_sprintf (buf + strlen (buf), "mask::%s",
permtostr (aclbufp[pos].a_perm));
break;
case OTHER_OBJ:
__small_sprintf (buf + strlen (buf), "other::%s",
permtostr (aclbufp[pos].a_perm));
break;
default:
set_errno (EINVAL);
return NULL;
}
}
return strdup (buf);
}
static mode_t
permfromstr (char *perm)
{
mode_t mode = 0;
if (strlen (perm) != 3)
return 01000;
if (perm[0] == 'r')
mode |= S_IROTH;
else if (perm[0] != '-')
return 01000;
if (perm[1] == 'w')
mode |= S_IWOTH;
else if (perm[1] != '-')
return 01000;
if (perm[2] == 'x')
mode |= S_IXOTH;
else if (perm[2] != '-')
return 01000;
return mode;
}
extern "C" aclent_t *
aclfromtext32 (char *acltextp, int *)
{
if (!acltextp)
{
set_errno (EINVAL);
return NULL;
}
char buf[strlen (acltextp) + 1];
aclent_t lacl[MAX_ACL_ENTRIES];
memset (lacl, 0, sizeof lacl);
int pos = 0;
strcpy (buf, acltextp);
char *lasts;
cyg_ldap cldap;
for (char *c = strtok_r (buf, ",", &lasts);
c;
c = strtok_r (NULL, ",", &lasts))
{
if (!strncmp (c, "default", 7))
{
lacl[pos].a_type |= ACL_DEFAULT;
c += 7;
}
if (!strncmp (c, "user:", 5))
{
if (c[5] == ':')
lacl[pos].a_type |= USER_OBJ;
else
{
lacl[pos].a_type |= USER;
c += 5;
if (isalpha (*c))
{
struct passwd *pw = internal_getpwnam (c, &cldap);
if (!pw)
{
set_errno (EINVAL);
return NULL;
}
lacl[pos].a_id = pw->pw_uid;
c = strchrnul (c, ':');
}
else if (isdigit (*c))
lacl[pos].a_id = strtol (c, &c, 10);
if (*c != ':')
{
set_errno (EINVAL);
return NULL;
}
}
}
else if (!strncmp (c, "group:", 6))
{
if (c[5] == ':')
lacl[pos].a_type |= GROUP_OBJ;
else
{
lacl[pos].a_type |= GROUP;
c += 5;
if (isalpha (*c))
{
struct group *gr = internal_getgrnam (c, &cldap);
if (!gr)
{
set_errno (EINVAL);
return NULL;
}
lacl[pos].a_id = gr->gr_gid;
c = strchrnul (c, ':');
}
else if (isdigit (*c))
lacl[pos].a_id = strtol (c, &c, 10);
if (*c != ':')
{
set_errno (EINVAL);
return NULL;
}
}
}
else if (!strncmp (c, "mask:", 5))
{
if (c[5] == ':')
lacl[pos].a_type |= CLASS_OBJ;
else
{
set_errno (EINVAL);
return NULL;
}
}
else if (!strncmp (c, "other:", 6))
{
if (c[5] == ':')
lacl[pos].a_type |= OTHER_OBJ;
else
{
set_errno (EINVAL);
return NULL;
}
}
if ((lacl[pos].a_perm = permfromstr (c)) == 01000)
{
set_errno (EINVAL);
return NULL;
}
++pos;
}
aclent_t *aclp = (aclent_t *) malloc (pos * sizeof (aclent_t));
if (aclp)
memcpy (aclp, lacl, pos * sizeof (aclent_t));
return aclp;
}
#ifdef __x86_64__
EXPORT_ALIAS (acl32, acl)
EXPORT_ALIAS (facl32, facl)
EXPORT_ALIAS (aclcheck32, aclcheck)
EXPORT_ALIAS (aclsort32, aclsort)
EXPORT_ALIAS (acltomode32, acltomode)
EXPORT_ALIAS (aclfrommode32, aclfrommode)
EXPORT_ALIAS (acltopbits32, acltopbits)
EXPORT_ALIAS (aclfrompbits32, aclfrompbits)
EXPORT_ALIAS (acltotext32, acltotext)
EXPORT_ALIAS (aclfromtext32, aclfromtext)
#else
typedef struct __acl16 {
int a_type;
__uid16_t a_id;
mode_t a_perm;
} __aclent16_t;
/* __aclent16_t and aclent_t have same size and same member offsets */
static aclent_t *
acl16to32 (__aclent16_t *aclbufp, int nentries)
{
aclent_t *aclbufp32 = (aclent_t *) aclbufp;
if (aclbufp32)
for (int i = 0; i < nentries; i++)
aclbufp32[i].a_id &= USHRT_MAX;
return aclbufp32;
}
extern "C" int
acl (const char *path, int cmd, int nentries, __aclent16_t *aclbufp)
{
return acl32 (path, cmd, nentries, acl16to32 (aclbufp, nentries));
}
extern "C" int
facl (int fd, int cmd, int nentries, __aclent16_t *aclbufp)
{
return facl32 (fd, cmd, nentries, acl16to32 (aclbufp, nentries));
}
extern "C" int
lacl (const char *path, int cmd, int nentries, __aclent16_t *aclbufp)
{
/* This call was an accident. Make it absolutely clear. */
set_errno (ENOSYS);
return -1;
}
extern "C" int
aclcheck (__aclent16_t *aclbufp, int nentries, int *which)
{
return aclcheck32 (acl16to32 (aclbufp, nentries), nentries, which);
}
extern "C" int
aclsort (int nentries, int i, __aclent16_t *aclbufp)
{
return aclsort32 (nentries, i, acl16to32 (aclbufp, nentries));
}
extern "C" int
acltomode (__aclent16_t *aclbufp, int nentries, mode_t *modep)
{
return acltomode32 (acl16to32 (aclbufp, nentries), nentries, modep);
}
extern "C" int
aclfrommode (__aclent16_t *aclbufp, int nentries, mode_t *modep)
{
return aclfrommode32 ((aclent_t *)aclbufp, nentries, modep);
}
extern "C" int
acltopbits (__aclent16_t *aclbufp, int nentries, mode_t *pbitsp)
{
return acltopbits32 (acl16to32 (aclbufp, nentries), nentries, pbitsp);
}
extern "C" int
aclfrompbits (__aclent16_t *aclbufp, int nentries, mode_t *pbitsp)
{
return aclfrompbits32 ((aclent_t *)aclbufp, nentries, pbitsp);
}
extern "C" char *
acltotext (__aclent16_t *aclbufp, int aclcnt)
{
return acltotext32 (acl16to32 (aclbufp, aclcnt), aclcnt);
}
extern "C" __aclent16_t *
aclfromtext (char *acltextp, int * aclcnt)
{
return (__aclent16_t *) aclfromtext32 (acltextp, aclcnt);
}
#endif /* !__x86_64__ */