mirror of
git://sourceware.org/git/newlib-cygwin.git
synced 2025-01-23 23:47:22 +08:00
e18743072b
This implements a set of vectorized math routines to be used by the compiler auto-vectorizer. Versions for vectors with 2 lanes up to 64 lanes (in powers of 2) are provided. These routines are based on the scalar versions of the math routines in libm/common, libm/math and libm/mathfp. They make extensive use of the GCC C vector extensions and GCN-specific builtins in GCC.
131 lines
4.3 KiB
C
131 lines
4.3 KiB
C
/*
|
|
* Copyright 2023 Siemens
|
|
*
|
|
* The authors hereby grant permission to use, copy, modify, distribute,
|
|
* and license this software and its documentation for any purpose, provided
|
|
* that existing copyright notices are retained in all copies and that this
|
|
* notice is included verbatim in any distributions. No written agreement,
|
|
* license, or royalty fee is required for any of the authorized uses.
|
|
* Modifications to this software may be copyrighted by their authors
|
|
* and need not follow the licensing terms described here, provided that
|
|
* the new terms are clearly indicated on the first page of each file where
|
|
* they apply.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1994-2009 Red Hat, Inc. All rights reserved.
|
|
*
|
|
* This copyrighted material is made available to anyone wishing to use,
|
|
* modify, copy, or redistribute it subject to the terms and conditions
|
|
* of the BSD License. This program is distributed in the hope that
|
|
* it will be useful, but WITHOUT ANY WARRANTY expressed or implied,
|
|
* including the implied warranties of MERCHANTABILITY or FITNESS FOR
|
|
* A PARTICULAR PURPOSE. A copy of this license is available at
|
|
* http://www.opensource.org/licenses. Any Red Hat trademarks that are
|
|
* incorporated in the source code or documentation are not subject to
|
|
* the BSD License and may only be used or replicated with the express
|
|
* permission of Red Hat, Inc.
|
|
*/
|
|
|
|
/******************************************************************
|
|
* The following routines are coded directly from the algorithms
|
|
* and coefficients given in "Software Manual for the Elementary
|
|
* Functions" by William J. Cody, Jr. and William Waite, Prentice
|
|
* Hall, 1980.
|
|
******************************************************************/
|
|
|
|
/* Based on newlib/libm/mathfp/s_sineh.c in Newlib. */
|
|
|
|
#include "amdgcnmach.h"
|
|
|
|
v64df v64df_exp_aux (v64df, v64di);
|
|
v64si v64df_numtest (v64df);
|
|
v64si v64df_ispos (v64df);
|
|
|
|
static const double q[] = { -0.21108770058106271242e+7,
|
|
0.36162723109421836460e+5,
|
|
-0.27773523119650701667e+3 };
|
|
static const double p[] = { -0.35181283430177117881e+6,
|
|
-0.11563521196851768270e+5,
|
|
-0.16375798202630751372e+3,
|
|
-0.78966127417357099479 };
|
|
static const double LNV = 0.6931610107421875000;
|
|
static const double INV_V2 = 0.24999308500451499336;
|
|
static const double V_OVER2_MINUS1 = 0.13830277879601902638e-4;
|
|
|
|
#if defined (__has_builtin) && __has_builtin (__builtin_gcn_fabsv)
|
|
|
|
DEF_VD_MATH_FUNC (v64df, sineh, v64df x, int cosineh)
|
|
{
|
|
const double WBAR = 18.55;
|
|
|
|
FUNCTION_INIT (v64df);
|
|
|
|
v64si sgn = VECTOR_INIT (0);
|
|
v64di v_cosineh = VECTOR_INIT (cosineh ? -1L : 0L);
|
|
|
|
/* Check for special values. */
|
|
v64si num_type = v64df_numtest (x);
|
|
VECTOR_IF (num_type == NAN, cond)
|
|
errno = EDOM;
|
|
VECTOR_RETURN (x, cond);
|
|
VECTOR_ELSEIF (num_type == INF, cond)
|
|
errno = ERANGE;
|
|
VECTOR_RETURN (VECTOR_MERGE (VECTOR_INIT (z_infinity.d),
|
|
VECTOR_INIT (-z_infinity.d),
|
|
v64df_ispos (x)),
|
|
cond);
|
|
VECTOR_ENDIF
|
|
|
|
v64df y = __builtin_gcn_fabsv (x);
|
|
|
|
if (!cosineh)
|
|
VECTOR_COND_MOVE (sgn, VECTOR_INIT (-1), x < 0.0);
|
|
|
|
v64df res;
|
|
|
|
VECTOR_IF (((y > 1.0) & ~v_cosineh) | v_cosineh, cond)
|
|
VECTOR_IF2 (y > BIGX, cond2, cond)
|
|
v64df w = y - LNV;
|
|
|
|
/* Check for w > maximum here. */
|
|
VECTOR_IF2 (w > BIGX, cond3, cond2)
|
|
errno = ERANGE;
|
|
VECTOR_RETURN (x, cond3);
|
|
VECTOR_ENDIF
|
|
|
|
v64df z = v64df_exp_aux (w, __mask);
|
|
|
|
VECTOR_COND_MOVE (res, z * (V_OVER2_MINUS1 + 1.0),
|
|
cond2 & (w > WBAR));
|
|
VECTOR_ELSE2 (cond2, cond)
|
|
v64df z = v64df_exp_aux (y, __mask);
|
|
if (cosineh)
|
|
VECTOR_COND_MOVE (res, (z + 1 / z) * 0.5, cond2);
|
|
else
|
|
VECTOR_COND_MOVE (res, (z - 1 / z) * 0.5, cond2);
|
|
VECTOR_ENDIF
|
|
|
|
VECTOR_COND_MOVE (res, -res, sgn);
|
|
VECTOR_ELSE (cond)
|
|
/* Check for y being too small. */
|
|
VECTOR_IF2 (y < z_rooteps, cond2, cond);
|
|
VECTOR_COND_MOVE (res, x, cond2);
|
|
VECTOR_ELSE2 (cond2, cond)
|
|
/* Calculate the Taylor series. */
|
|
v64df f = x * x;
|
|
v64df Q = ((f + q[2]) * f + q[1]) * f + q[0];
|
|
v64df P = ((p[3] * f + p[2]) * f + p[1]) * f + p[0];
|
|
v64df R = f * (P / Q);
|
|
|
|
VECTOR_COND_MOVE (res, x + x * R, cond2);
|
|
VECTOR_ENDIF
|
|
VECTOR_ENDIF
|
|
|
|
VECTOR_RETURN (res, NO_COND);
|
|
|
|
FUNCTION_RETURN;
|
|
}
|
|
|
|
#endif
|