4
0
mirror of git://sourceware.org/git/newlib-cygwin.git synced 2025-01-15 11:00:04 +08:00
Thomas Fitzsimmons d3bd3632ac * libc/sys/linux/cmath: New directory.
* libc/sys/linux/include/cmathcalls.h: New file.
	* libc/sys/linux/include/complex.h: New file.
	* libc/sys/linux/machine/i386/huge_val.h: New file
	* libm/math/w_sincos.c: New file
	* libm/math/wf_sincos.c: New file
	* libm/mathfp/s_sincos.c: New file
	* libm/mathfp/sf_sincos.c: New file
	* Makefile.am (LIBC_OBJECTLISTS): Add cmath/objectlist.awk.in.
	* libc/include/math.h: Add sincos and sincosf declarations.
	* libc/sys/linux/Makefile.am (SUBDIRS): Add cmath.
	(SUBLIBS): Likewise.
	* libc/sys/linux/configure.in (AC_OUTPUT): Add cmath.
	* libm/math/Makefile.am (src): Add w_sincos.c.
	(fsrc): Add wf_sincos.c.
	* libm/mathfp/Makefile.am (src): Add s_sincos.c
	(fsrc): Add sf_sincos.c.
2002-08-16 21:29:45 +00:00

159 lines
4.7 KiB
C

/* Prototype declarations for complex math functions;
helper file for <complex.h>.
Copyright (C) 1997, 1998, 2001 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA. */
/* NOTE: Because of the special way this file is used by <complex.h>, this
file must NOT be protected from multiple inclusion as header files
usually are.
This file provides prototype declarations for the math functions.
Most functions are declared using the macro:
__MATHCALL (NAME, (ARGS...));
This means there is a function `NAME' returning `double' and a function
`NAMEf' returning `float'. Each place `_Mdouble_' appears in the
prototype, that is actually `double' in the prototype for `NAME' and
`float' in the prototype for `NAMEf'. Reentrant variant functions are
called `NAME_r' and `NAMEf_r'.
Functions returning other types like `int' are declared using the macro:
__MATHDECL (TYPE, NAME, (ARGS...));
This is just like __MATHCALL but for a function returning `TYPE'
instead of `_Mdouble_'. In all of these cases, there is still
both a `NAME' and a `NAMEf' that takes `float' arguments. */
#ifndef _COMPLEX_H
#error "Never use <bits/cmathcalls.h> directly; include <complex.h> instead."
#endif
#define _Mdouble_complex_ _Mdouble_ _Complex
/* Trigonometric functions. */
/* Arc cosine of Z. */
__MATHCALL (cacos, (_Mdouble_complex_ __z));
/* Arc sine of Z. */
__MATHCALL (casin, (_Mdouble_complex_ __z));
/* Arc tangent of Z. */
__MATHCALL (catan, (_Mdouble_complex_ __z));
/* Cosine of Z. */
__MATHCALL (ccos, (_Mdouble_complex_ __z));
/* Sine of Z. */
__MATHCALL (csin, (_Mdouble_complex_ __z));
/* Tangent of Z. */
__MATHCALL (ctan, (_Mdouble_complex_ __z));
/* Hyperbolic functions. */
/* Hyperbolic arc cosine of Z. */
__MATHCALL (cacosh, (_Mdouble_complex_ __z));
/* Hyperbolic arc sine of Z. */
__MATHCALL (casinh, (_Mdouble_complex_ __z));
/* Hyperbolic arc tangent of Z. */
__MATHCALL (catanh, (_Mdouble_complex_ __z));
/* Hyperbolic cosine of Z. */
__MATHCALL (ccosh, (_Mdouble_complex_ __z));
/* Hyperbolic sine of Z. */
__MATHCALL (csinh, (_Mdouble_complex_ __z));
/* Hyperbolic tangent of Z. */
__MATHCALL (ctanh, (_Mdouble_complex_ __z));
/* Exponential and logarithmic functions. */
/* Exponential function of Z. */
__MATHCALL (cexp, (_Mdouble_complex_ __z));
/* Natural logarithm of Z. */
__MATHCALL (clog, (_Mdouble_complex_ __z));
#ifdef __USE_GNU
/* The base 10 logarithm is not defined by the standard but to implement
the standard C++ library it is handy. */
__MATHCALL (clog10, (_Mdouble_complex_ __z));
#endif
/* Power functions. */
/* Return X to the Y power. */
__MATHCALL (cpow, (_Mdouble_complex_ __x, _Mdouble_complex_ __y));
/* Return the square root of Z. */
__MATHCALL (csqrt, (_Mdouble_complex_ __z));
/* Absolute value, conjugates, and projection. */
/* Absolute value of Z. */
__MATHDECL (_Mdouble_,cabs, (_Mdouble_complex_ __z));
/* Argument value of Z. */
__MATHDECL (_Mdouble_,carg, (_Mdouble_complex_ __z));
/* Complex conjugate of Z. */
__MATHCALL (conj, (_Mdouble_complex_ __z));
/* Projection of Z onto the Riemann sphere. */
__MATHCALL (cproj, (_Mdouble_complex_ __z));
/* Decomposing complex values. */
/* Imaginary part of Z. */
__MATHDECL (_Mdouble_,cimag, (_Mdouble_complex_ __z));
/* Real part of Z. */
__MATHDECL (_Mdouble_,creal, (_Mdouble_complex_ __z));
/* Now some optimized versions. GCC has handy notations for these
functions. Recent GCC handles these as builtin functions so does
not need inlines. */
#if defined __GNUC__ && !__GNUC_PREREQ (2, 97) && defined __OPTIMIZE__
/* Imaginary part of Z. */
extern __inline _Mdouble_
__MATH_PRECNAME(cimag) (_Mdouble_complex_ __z) __THROW
{
return __imag__ __z;
}
/* Real part of Z. */
extern __inline _Mdouble_
__MATH_PRECNAME(creal) (_Mdouble_complex_ __z) __THROW
{
return __real__ __z;
}
/* Complex conjugate of Z. */
extern __inline _Mdouble_complex_
__MATH_PRECNAME(conj) (_Mdouble_complex_ __z) __THROW
{
return __extension__ ~__z;
}
#endif