mirror of
git://sourceware.org/git/newlib-cygwin.git
synced 2025-01-27 01:27:21 +08:00
bafd65f2fb
Check for HW FMA and SQRT support and use those instructions in place of software implementations. Signed-off-by: Keith Packard <keithp@keithp.com>
436 lines
11 KiB
C
436 lines
11 KiB
C
/* Configuration for math routines.
|
|
Copyright (c) 2017-2018 Arm Ltd. All rights reserved.
|
|
|
|
SPDX-License-Identifier: BSD-3-Clause
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
1. Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
3. The name of the company may not be used to endorse or promote
|
|
products derived from this software without specific prior written
|
|
permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
|
|
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
|
|
|
|
#ifndef _MATH_CONFIG_H
|
|
#define _MATH_CONFIG_H
|
|
|
|
#include <math.h>
|
|
#include <stdint.h>
|
|
|
|
#ifndef WANT_ROUNDING
|
|
/* Correct special case results in non-nearest rounding modes. */
|
|
# define WANT_ROUNDING 1
|
|
#endif
|
|
#ifdef _IEEE_LIBM
|
|
# define WANT_ERRNO 0
|
|
# define _LIB_VERSION _IEEE_
|
|
#else
|
|
/* Set errno according to ISO C with (math_errhandling & MATH_ERRNO) != 0. */
|
|
# define WANT_ERRNO 1
|
|
# define _LIB_VERSION _POSIX_
|
|
#endif
|
|
#ifndef WANT_ERRNO_UFLOW
|
|
/* Set errno to ERANGE if result underflows to 0 (in all rounding modes). */
|
|
# define WANT_ERRNO_UFLOW (WANT_ROUNDING && WANT_ERRNO)
|
|
#endif
|
|
|
|
#define _IEEE_ -1
|
|
#define _POSIX_ 0
|
|
|
|
/* Compiler can inline round as a single instruction. */
|
|
#ifndef HAVE_FAST_ROUND
|
|
# if __aarch64__
|
|
# define HAVE_FAST_ROUND 1
|
|
# else
|
|
# define HAVE_FAST_ROUND 0
|
|
# endif
|
|
#endif
|
|
|
|
/* Compiler can inline lround, but not (long)round(x). */
|
|
#ifndef HAVE_FAST_LROUND
|
|
# if __aarch64__ && (100*__GNUC__ + __GNUC_MINOR__) >= 408 && __NO_MATH_ERRNO__
|
|
# define HAVE_FAST_LROUND 1
|
|
# else
|
|
# define HAVE_FAST_LROUND 0
|
|
# endif
|
|
#endif
|
|
|
|
/* Compiler can inline fma as a single instruction. */
|
|
#ifndef HAVE_FAST_FMA
|
|
# if __aarch64__ || (__ARM_FEATURE_FMA && (__ARM_FP & 8)) || __riscv_flen >= 64
|
|
# define HAVE_FAST_FMA 1
|
|
# else
|
|
# define HAVE_FAST_FMA 0
|
|
# endif
|
|
#endif
|
|
|
|
#ifndef HAVE_FAST_FMAF
|
|
# if HAVE_FAST_FMA || (__ARM_FEATURE_FMA && (__ARM_FP & 4)) || __riscv_flen >= 32
|
|
# define HAVE_FAST_FMAF 1
|
|
# else
|
|
# define HAVE_FAST_FMAF 0
|
|
# endif
|
|
#endif
|
|
|
|
#if HAVE_FAST_ROUND
|
|
/* When set, the roundtoint and converttoint functions are provided with
|
|
the semantics documented below. */
|
|
# define TOINT_INTRINSICS 1
|
|
|
|
/* Round x to nearest int in all rounding modes, ties have to be rounded
|
|
consistently with converttoint so the results match. If the result
|
|
would be outside of [-2^31, 2^31-1] then the semantics is unspecified. */
|
|
static inline double_t
|
|
roundtoint (double_t x)
|
|
{
|
|
return round (x);
|
|
}
|
|
|
|
/* Convert x to nearest int in all rounding modes, ties have to be rounded
|
|
consistently with roundtoint. If the result is not representible in an
|
|
int32_t then the semantics is unspecified. */
|
|
static inline int32_t
|
|
converttoint (double_t x)
|
|
{
|
|
# if HAVE_FAST_LROUND
|
|
return lround (x);
|
|
# else
|
|
return (long) round (x);
|
|
# endif
|
|
}
|
|
#endif
|
|
|
|
#ifndef TOINT_INTRINSICS
|
|
# define TOINT_INTRINSICS 0
|
|
#endif
|
|
|
|
static inline uint32_t
|
|
asuint (float f)
|
|
{
|
|
union
|
|
{
|
|
float f;
|
|
uint32_t i;
|
|
} u = {f};
|
|
return u.i;
|
|
}
|
|
|
|
static inline float
|
|
asfloat (uint32_t i)
|
|
{
|
|
union
|
|
{
|
|
uint32_t i;
|
|
float f;
|
|
} u = {i};
|
|
return u.f;
|
|
}
|
|
|
|
static inline uint64_t
|
|
asuint64 (double f)
|
|
{
|
|
union
|
|
{
|
|
double f;
|
|
uint64_t i;
|
|
} u = {f};
|
|
return u.i;
|
|
}
|
|
|
|
static inline double
|
|
asdouble (uint64_t i)
|
|
{
|
|
union
|
|
{
|
|
uint64_t i;
|
|
double f;
|
|
} u = {i};
|
|
return u.f;
|
|
}
|
|
|
|
#ifndef IEEE_754_2008_SNAN
|
|
# define IEEE_754_2008_SNAN 1
|
|
#endif
|
|
static inline int
|
|
issignalingf_inline (float x)
|
|
{
|
|
uint32_t ix = asuint (x);
|
|
if (!IEEE_754_2008_SNAN)
|
|
return (ix & 0x7fc00000) == 0x7fc00000;
|
|
return 2 * (ix ^ 0x00400000) > 0xFF800000u;
|
|
}
|
|
|
|
static inline int
|
|
issignaling_inline (double x)
|
|
{
|
|
uint64_t ix = asuint64 (x);
|
|
if (!IEEE_754_2008_SNAN)
|
|
return (ix & 0x7ff8000000000000) == 0x7ff8000000000000;
|
|
return 2 * (ix ^ 0x0008000000000000) > 2 * 0x7ff8000000000000ULL;
|
|
}
|
|
|
|
#if __aarch64__ && __GNUC__
|
|
/* Prevent the optimization of a floating-point expression. */
|
|
static inline float
|
|
opt_barrier_float (float x)
|
|
{
|
|
__asm__ __volatile__ ("" : "+w" (x));
|
|
return x;
|
|
}
|
|
static inline double
|
|
opt_barrier_double (double x)
|
|
{
|
|
__asm__ __volatile__ ("" : "+w" (x));
|
|
return x;
|
|
}
|
|
/* Force the evaluation of a floating-point expression for its side-effect. */
|
|
static inline void
|
|
force_eval_float (float x)
|
|
{
|
|
__asm__ __volatile__ ("" : "+w" (x));
|
|
}
|
|
static inline void
|
|
force_eval_double (double x)
|
|
{
|
|
__asm__ __volatile__ ("" : "+w" (x));
|
|
}
|
|
#else
|
|
static inline float
|
|
opt_barrier_float (float x)
|
|
{
|
|
volatile float y = x;
|
|
return y;
|
|
}
|
|
static inline double
|
|
opt_barrier_double (double x)
|
|
{
|
|
volatile double y = x;
|
|
return y;
|
|
}
|
|
#pragma GCC diagnostic ignored "-Wunused-variable"
|
|
static inline void
|
|
force_eval_float (float x)
|
|
{
|
|
volatile float y = x;
|
|
}
|
|
static inline void
|
|
force_eval_double (double x)
|
|
{
|
|
volatile double y = x;
|
|
}
|
|
#pragma GCC diagnostic pop
|
|
#endif
|
|
|
|
/* Evaluate an expression as the specified type, normally a type
|
|
cast should be enough, but compilers implement non-standard
|
|
excess-precision handling, so when FLT_EVAL_METHOD != 0 then
|
|
these functions may need to be customized. */
|
|
static inline float
|
|
eval_as_float (float x)
|
|
{
|
|
return x;
|
|
}
|
|
static inline double
|
|
eval_as_double (double x)
|
|
{
|
|
return x;
|
|
}
|
|
|
|
#ifdef __GNUC__
|
|
# define NOINLINE __attribute__ ((noinline))
|
|
# define likely(x) __builtin_expect (!!(x), 1)
|
|
# define unlikely(x) __builtin_expect (x, 0)
|
|
#else
|
|
# define NOINLINE
|
|
# define likely(x) (x)
|
|
# define unlikely(x) (x)
|
|
#endif
|
|
|
|
/* gcc emitting PE/COFF doesn't support visibility */
|
|
#if defined (__GNUC__) && !defined (__CYGWIN__)
|
|
# define HIDDEN __attribute__ ((__visibility__ ("hidden")))
|
|
#else
|
|
# define HIDDEN
|
|
#endif
|
|
|
|
/* Error handling tail calls for special cases, with a sign argument.
|
|
The sign of the return value is set if the argument is non-zero. */
|
|
|
|
/* The result overflows. */
|
|
HIDDEN float __math_oflowf (uint32_t);
|
|
/* The result underflows to 0 in nearest rounding mode. */
|
|
HIDDEN float __math_uflowf (uint32_t);
|
|
/* The result underflows to 0 in some directed rounding mode only. */
|
|
HIDDEN float __math_may_uflowf (uint32_t);
|
|
/* Division by zero. */
|
|
HIDDEN float __math_divzerof (uint32_t);
|
|
/* The result overflows. */
|
|
HIDDEN double __math_oflow (uint32_t);
|
|
/* The result underflows to 0 in nearest rounding mode. */
|
|
HIDDEN double __math_uflow (uint32_t);
|
|
/* The result underflows to 0 in some directed rounding mode only. */
|
|
HIDDEN double __math_may_uflow (uint32_t);
|
|
/* Division by zero. */
|
|
HIDDEN double __math_divzero (uint32_t);
|
|
|
|
/* Error handling using input checking. */
|
|
|
|
/* Invalid input unless it is a quiet NaN. */
|
|
HIDDEN float __math_invalidf (float);
|
|
/* Invalid input unless it is a quiet NaN. */
|
|
HIDDEN double __math_invalid (double);
|
|
|
|
/* Error handling using output checking, only for errno setting. */
|
|
|
|
/* Check if the result overflowed to infinity. */
|
|
HIDDEN double __math_check_oflow (double);
|
|
/* Check if the result underflowed to 0. */
|
|
HIDDEN double __math_check_uflow (double);
|
|
|
|
/* Check if the result overflowed to infinity. */
|
|
static inline double
|
|
check_oflow (double x)
|
|
{
|
|
return WANT_ERRNO ? __math_check_oflow (x) : x;
|
|
}
|
|
|
|
/* Check if the result underflowed to 0. */
|
|
static inline double
|
|
check_uflow (double x)
|
|
{
|
|
return WANT_ERRNO ? __math_check_uflow (x) : x;
|
|
}
|
|
|
|
/* Shared between expf, exp2f and powf. */
|
|
#define EXP2F_TABLE_BITS 5
|
|
#define EXP2F_POLY_ORDER 3
|
|
extern const struct exp2f_data
|
|
{
|
|
uint64_t tab[1 << EXP2F_TABLE_BITS];
|
|
double shift_scaled;
|
|
double poly[EXP2F_POLY_ORDER];
|
|
double shift;
|
|
double invln2_scaled;
|
|
double poly_scaled[EXP2F_POLY_ORDER];
|
|
} __exp2f_data HIDDEN;
|
|
|
|
#define LOGF_TABLE_BITS 4
|
|
#define LOGF_POLY_ORDER 4
|
|
extern const struct logf_data
|
|
{
|
|
struct
|
|
{
|
|
double invc, logc;
|
|
} tab[1 << LOGF_TABLE_BITS];
|
|
double ln2;
|
|
double poly[LOGF_POLY_ORDER - 1]; /* First order coefficient is 1. */
|
|
} __logf_data HIDDEN;
|
|
|
|
#define LOG2F_TABLE_BITS 4
|
|
#define LOG2F_POLY_ORDER 4
|
|
extern const struct log2f_data
|
|
{
|
|
struct
|
|
{
|
|
double invc, logc;
|
|
} tab[1 << LOG2F_TABLE_BITS];
|
|
double poly[LOG2F_POLY_ORDER];
|
|
} __log2f_data HIDDEN;
|
|
|
|
#define POWF_LOG2_TABLE_BITS 4
|
|
#define POWF_LOG2_POLY_ORDER 5
|
|
#if TOINT_INTRINSICS
|
|
# define POWF_SCALE_BITS EXP2F_TABLE_BITS
|
|
#else
|
|
# define POWF_SCALE_BITS 0
|
|
#endif
|
|
#define POWF_SCALE ((double) (1 << POWF_SCALE_BITS))
|
|
extern const struct powf_log2_data
|
|
{
|
|
struct
|
|
{
|
|
double invc, logc;
|
|
} tab[1 << POWF_LOG2_TABLE_BITS];
|
|
double poly[POWF_LOG2_POLY_ORDER];
|
|
} __powf_log2_data HIDDEN;
|
|
|
|
#define EXP_TABLE_BITS 7
|
|
#define EXP_POLY_ORDER 5
|
|
/* Use polynomial that is optimized for a wider input range. This may be
|
|
needed for good precision in non-nearest rounding and !TOINT_INTRINSICS. */
|
|
#define EXP_POLY_WIDE 0
|
|
/* Use close to nearest rounding toint when !TOINT_INTRINSICS. This may be
|
|
needed for good precision in non-nearest rouning and !EXP_POLY_WIDE. */
|
|
#define EXP_USE_TOINT_NARROW 0
|
|
#define EXP2_POLY_ORDER 5
|
|
#define EXP2_POLY_WIDE 0
|
|
extern const struct exp_data
|
|
{
|
|
double invln2N;
|
|
double shift;
|
|
double negln2hiN;
|
|
double negln2loN;
|
|
double poly[4]; /* Last four coefficients. */
|
|
double exp2_shift;
|
|
double exp2_poly[EXP2_POLY_ORDER];
|
|
uint64_t tab[2*(1 << EXP_TABLE_BITS)];
|
|
} __exp_data HIDDEN;
|
|
|
|
#define LOG_TABLE_BITS 7
|
|
#define LOG_POLY_ORDER 6
|
|
#define LOG_POLY1_ORDER 12
|
|
extern const struct log_data
|
|
{
|
|
double ln2hi;
|
|
double ln2lo;
|
|
double poly[LOG_POLY_ORDER - 1]; /* First coefficient is 1. */
|
|
double poly1[LOG_POLY1_ORDER - 1];
|
|
struct {double invc, logc;} tab[1 << LOG_TABLE_BITS];
|
|
#if !HAVE_FAST_FMA
|
|
struct {double chi, clo;} tab2[1 << LOG_TABLE_BITS];
|
|
#endif
|
|
} __log_data HIDDEN;
|
|
|
|
#define LOG2_TABLE_BITS 6
|
|
#define LOG2_POLY_ORDER 7
|
|
#define LOG2_POLY1_ORDER 11
|
|
extern const struct log2_data
|
|
{
|
|
double invln2hi;
|
|
double invln2lo;
|
|
double poly[LOG2_POLY_ORDER - 1];
|
|
double poly1[LOG2_POLY1_ORDER - 1];
|
|
struct {double invc, logc;} tab[1 << LOG2_TABLE_BITS];
|
|
#if !HAVE_FAST_FMA
|
|
struct {double chi, clo;} tab2[1 << LOG2_TABLE_BITS];
|
|
#endif
|
|
} __log2_data HIDDEN;
|
|
|
|
#define POW_LOG_TABLE_BITS 7
|
|
#define POW_LOG_POLY_ORDER 8
|
|
extern const struct pow_log_data
|
|
{
|
|
double ln2hi;
|
|
double ln2lo;
|
|
double poly[POW_LOG_POLY_ORDER - 1]; /* First coefficient is 1. */
|
|
/* Note: the pad field is unused, but allows slightly faster indexing. */
|
|
struct {double invc, pad, logc, logctail;} tab[1 << POW_LOG_TABLE_BITS];
|
|
} __pow_log_data HIDDEN;
|
|
|
|
#endif
|