4
0
mirror of git://sourceware.org/git/newlib-cygwin.git synced 2025-01-15 11:00:04 +08:00
Jeff Johnston 76a7df5256 2003-10-20 Bob Wilson <bob.wilson@acm.org>
* libc/locale/locale.c: Use double quotes in code.
	* libc/locale/locale.tex: Likewise.
	* libc/libc.texinfo: Hyphenate "floating-point".
	* libc/machine/necv70/necv70.tex: Likewise.
	* libc/stdio/sprintf.c: Likewise.
	* libc/stdio/sscanf.c: Likewise.
	* libc/stdlib/atof.c: Likewise.
	* libc/stdlib/ldtoa.c: Fix comment typo.
	* libc/stdlib/div.c: Use @ifnottex instead of @ifinfo.
	* libc/stdlib/ldiv.c: Likewise.
	* libm/common/s_expm1.c: Likewise.
	* libm/common/s_ilogb.c: Hyphenate "floating-point".  Use "nonzero".
	* libm/common/s_infinity: Hyphenate "double- and single-precision".
	* libm/common/s_nan.c: Likewise.  Also correct the FUNCTION summary.
	* libm/common/s_nextafter.c: Fix typo.  Hyphenate "double-precision"
	and "floating-point".
	* libm/common/s_scalbn.c: Correct the FUNCTION summary.
	* libm/math/e_pow.c: Fix comment typo.
	* libm/math/math.tex: Hyphenate "single-precision" and "floating-point".
	* libm/math/s_asinh.c: Use @ifnottex instead of @ifinfo.
	* libm/math/s_atan.c: Likewise.
	* libm/math/s_frexp.c: Likewise.  Also use "nonzero".
	* libm/math/s_isnan.c: Hyphenate "single-precision" and
	"floating-point".  Use "nonzero".
	* libm/math/s_ldexp.c: Use @ifnottex instead of @ifinfo.
	* libm/math/w_acos.c: Likewise.
	* libm/math/w_acosh.c: Likewise.
	* libm/math/w_asin.c: Likewise.
	* libm/math/w_atan2.c: Likewise.
	* libm/math/w_atanh.c: Likewise.
	* libm/math/w_cosh.c: Likewise.
	* libm/math/w_exp.c: Likewise.
	* libm/math/w_exp2.c: Likewise.  Add missing @end and missing @tex
	version of 2^x in the description.
	* libm/math/w_fmod.c: Use @ifnottex instead of @ifinfo.
	* libm/math/w_gamma.c: Likewise.
	* libm/math/w_hypot.c: Likewise.
	* libm/math/w_j0.c: Likewise.
	* libm/math/w_sinh.c: Likewise.
	* libm/math/w_pow.c: Replace "exp1.0nt" with "exponent".
	* libm/mathfp/mathfp.tex: Hyphenate "single-precision" and
	"floating-point".
	* libm/mathfp/e_acosh.c: Use @ifnottex instead of @ifinfo.
	* libm/mathfp/e_atanh.c: Likewise.
	* libm/mathfp/e_hypot.c: Likewise.
	* libm/mathfp/er_lgamma.c: Likewise.
	* libm/mathfp/s_acos.c: Likewise.
	* libm/mathfp/s_asine.c: Likewise.
	* libm/mathfp/s_asinh.c: Likewise.
	* libm/mathfp/s_atan.c: Likewise.
	* libm/mathfp/s_atan2.c: Likewise.
	* libm/mathfp/s_atangent.c: Likewise.
	* libm/mathfp/s_cosh.c: Likewise.
	* libm/mathfp/s_exp.c: Likewise.
	* libm/mathfp/s_fmod.c: Likewise.
	* libm/mathfp/s_frexp.c: Likewise.  Also use "nonzero".
	* libm/mathfp/s_isnan.c: Hyphenate "single-precision" and
	"floating-point".  Use "nonzero".
	* libm/math/s_pow.c: Replace "exp1.0nt" with "exponent".
	* libm/mathfp/s_ldexp.c: Use @ifnottex instead of @ifinfo.
	* libm/mathfp/s_sineh.c: Likewise.
	* libm/mathfp/w_jn.c: Likewise.
2003-10-20 18:46:38 +00:00

273 lines
8.3 KiB
C

/* @(#)s_expm1.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
FUNCTION
<<expm1>>, <<expm1f>>---exponential minus 1
INDEX
expm1
INDEX
expm1f
ANSI_SYNOPSIS
#include <math.h>
double expm1(double <[x]>);
float expm1f(float <[x]>);
TRAD_SYNOPSIS
#include <math.h>
double expm1(<[x]>);
double <[x]>;
float expm1f(<[x]>);
float <[x]>;
DESCRIPTION
<<expm1>> and <<expm1f>> calculate the exponential of <[x]>
and subtract 1, that is,
@ifnottex
e raised to the power <[x]> minus 1 (where e
@end ifnottex
@tex
$e^x - 1$ (where $e$
@end tex
is the base of the natural system of logarithms, approximately
2.71828). The result is accurate even for small values of
<[x]>, where using <<exp(<[x]>)-1>> would lose many
significant digits.
RETURNS
e raised to the power <[x]>, minus 1.
PORTABILITY
Neither <<expm1>> nor <<expm1f>> is required by ANSI C or by
the System V Interface Definition (Issue 2).
*/
/* expm1(x)
* Returns exp(x)-1, the exponential of x minus 1.
*
* Method
* 1. Argument reduction:
* Given x, find r and integer k such that
*
* x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658
*
* Here a correction term c will be computed to compensate
* the error in r when rounded to a floating-point number.
*
* 2. Approximating expm1(r) by a special rational function on
* the interval [0,0.34658]:
* Since
* r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
* we define R1(r*r) by
* r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
* That is,
* R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
* = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
* = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
* We use a special Reme algorithm on [0,0.347] to generate
* a polynomial of degree 5 in r*r to approximate R1. The
* maximum error of this polynomial approximation is bounded
* by 2**-61. In other words,
* R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
* where Q1 = -1.6666666666666567384E-2,
* Q2 = 3.9682539681370365873E-4,
* Q3 = -9.9206344733435987357E-6,
* Q4 = 2.5051361420808517002E-7,
* Q5 = -6.2843505682382617102E-9;
* (where z=r*r, and the values of Q1 to Q5 are listed below)
* with error bounded by
* | 5 | -61
* | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2
* | |
*
* expm1(r) = exp(r)-1 is then computed by the following
* specific way which minimize the accumulation rounding error:
* 2 3
* r r [ 3 - (R1 + R1*r/2) ]
* expm1(r) = r + --- + --- * [--------------------]
* 2 2 [ 6 - r*(3 - R1*r/2) ]
*
* To compensate the error in the argument reduction, we use
* expm1(r+c) = expm1(r) + c + expm1(r)*c
* ~ expm1(r) + c + r*c
* Thus c+r*c will be added in as the correction terms for
* expm1(r+c). Now rearrange the term to avoid optimization
* screw up:
* ( 2 2 )
* ({ ( r [ R1 - (3 - R1*r/2) ] ) } r )
* expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
* ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 )
* ( )
*
* = r - E
* 3. Scale back to obtain expm1(x):
* From step 1, we have
* expm1(x) = either 2^k*[expm1(r)+1] - 1
* = or 2^k*[expm1(r) + (1-2^-k)]
* 4. Implementation notes:
* (A). To save one multiplication, we scale the coefficient Qi
* to Qi*2^i, and replace z by (x^2)/2.
* (B). To achieve maximum accuracy, we compute expm1(x) by
* (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
* (ii) if k=0, return r-E
* (iii) if k=-1, return 0.5*(r-E)-0.5
* (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E)
* else return 1.0+2.0*(r-E);
* (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
* (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else
* (vii) return 2^k(1-((E+2^-k)-r))
*
* Special cases:
* expm1(INF) is INF, expm1(NaN) is NaN;
* expm1(-INF) is -1, and
* for finite argument, only expm1(0)=0 is exact.
*
* Accuracy:
* according to an error analysis, the error is always less than
* 1 ulp (unit in the last place).
*
* Misc. info.
* For IEEE double
* if x > 7.09782712893383973096e+02 then expm1(x) overflow
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
#include "fdlibm.h"
#ifndef _DOUBLE_IS_32BITS
#ifdef __STDC__
static const double
#else
static double
#endif
one = 1.0,
huge = 1.0e+300,
tiny = 1.0e-300,
o_threshold = 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
ln2_hi = 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
ln2_lo = 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
invln2 = 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
/* scaled coefficients related to expm1 */
Q1 = -3.33333333333331316428e-02, /* BFA11111 111110F4 */
Q2 = 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
Q3 = -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
Q4 = 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
#ifdef __STDC__
double expm1(double x)
#else
double expm1(x)
double x;
#endif
{
double y,hi,lo,c,t,e,hxs,hfx,r1;
__int32_t k,xsb;
__uint32_t hx;
GET_HIGH_WORD(hx,x);
xsb = hx&0x80000000; /* sign bit of x */
if(xsb==0) y=x; else y= -x; /* y = |x| */
hx &= 0x7fffffff; /* high word of |x| */
/* filter out huge and non-finite argument */
if(hx >= 0x4043687A) { /* if |x|>=56*ln2 */
if(hx >= 0x40862E42) { /* if |x|>=709.78... */
if(hx>=0x7ff00000) {
__uint32_t low;
GET_LOW_WORD(low,x);
if(((hx&0xfffff)|low)!=0)
return x+x; /* NaN */
else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
}
if(x > o_threshold) return huge*huge; /* overflow */
}
if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
if(x+tiny<0.0) /* raise inexact */
return tiny-one; /* return -1 */
}
}
/* argument reduction */
if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
if(xsb==0)
{hi = x - ln2_hi; lo = ln2_lo; k = 1;}
else
{hi = x + ln2_hi; lo = -ln2_lo; k = -1;}
} else {
k = invln2*x+((xsb==0)?0.5:-0.5);
t = k;
hi = x - t*ln2_hi; /* t*ln2_hi is exact here */
lo = t*ln2_lo;
}
x = hi - lo;
c = (hi-x)-lo;
}
else if(hx < 0x3c900000) { /* when |x|<2**-54, return x */
t = huge+x; /* return x with inexact flags when x!=0 */
return x - (t-(huge+x));
}
else k = 0;
/* x is now in primary range */
hfx = 0.5*x;
hxs = x*hfx;
r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
t = 3.0-r1*hfx;
e = hxs*((r1-t)/(6.0 - x*t));
if(k==0) return x - (x*e-hxs); /* c is 0 */
else {
e = (x*(e-c)-c);
e -= hxs;
if(k== -1) return 0.5*(x-e)-0.5;
if(k==1) {
if(x < -0.25) return -2.0*(e-(x+0.5));
else return one+2.0*(x-e);
}
if (k <= -2 || k>56) { /* suffice to return exp(x)-1 */
__uint32_t high;
y = one-(e-x);
GET_HIGH_WORD(high,y);
SET_HIGH_WORD(y,high+(k<<20)); /* add k to y's exponent */
return y-one;
}
t = one;
if(k<20) {
__uint32_t high;
SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k)); /* t=1-2^-k */
y = t-(e-x);
GET_HIGH_WORD(high,y);
SET_HIGH_WORD(y,high+(k<<20)); /* add k to y's exponent */
} else {
__uint32_t high;
SET_HIGH_WORD(t,((0x3ff-k)<<20)); /* 2^-k */
y = x-(e+t);
y += one;
GET_HIGH_WORD(high,y);
SET_HIGH_WORD(y,high+(k<<20)); /* add k to y's exponent */
}
}
return y;
}
#endif /* _DOUBLE_IS_32BITS */