mirror of
git://sourceware.org/git/newlib-cygwin.git
synced 2025-01-22 15:07:43 +08:00
78f66de6ce
* libc/machine/aarch64/strnlen.S: Correct arithmetic for argument N values close to the maximum representable value in an unsigned 64 bit value.
188 lines
5.8 KiB
ArmAsm
188 lines
5.8 KiB
ArmAsm
/* strnlen - calculate the length of a string with limit.
|
|
|
|
Copyright (c) 2013, Linaro Limited
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
* Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
* Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
* Neither the name of the Linaro nor the
|
|
names of its contributors may be used to endorse or promote products
|
|
derived from this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
|
|
|
|
#if (defined (__OPTIMIZE_SIZE__) || defined (PREFER_SIZE_OVER_SPEED))
|
|
/* See strlen-stub.c */
|
|
#else
|
|
|
|
/* Assumptions:
|
|
*
|
|
* ARMv8-a, AArch64
|
|
*/
|
|
|
|
/* Arguments and results. */
|
|
#define srcin x0
|
|
#define len x0
|
|
#define limit x1
|
|
|
|
/* Locals and temporaries. */
|
|
#define src x2
|
|
#define data1 x3
|
|
#define data2 x4
|
|
#define data2a x5
|
|
#define has_nul1 x6
|
|
#define has_nul2 x7
|
|
#define tmp1 x8
|
|
#define tmp2 x9
|
|
#define tmp3 x10
|
|
#define tmp4 x11
|
|
#define zeroones x12
|
|
#define pos x13
|
|
#define limit_wd x14
|
|
|
|
.macro def_fn f p2align=0
|
|
.text
|
|
.p2align \p2align
|
|
.global \f
|
|
.type \f, %function
|
|
\f:
|
|
.endm
|
|
|
|
#define REP8_01 0x0101010101010101
|
|
#define REP8_7f 0x7f7f7f7f7f7f7f7f
|
|
#define REP8_80 0x8080808080808080
|
|
|
|
.text
|
|
.p2align 6
|
|
.Lstart:
|
|
/* Pre-pad to ensure critical loop begins an icache line. */
|
|
.rep 7
|
|
nop
|
|
.endr
|
|
/* Put this code here to avoid wasting more space with pre-padding. */
|
|
.Lhit_limit:
|
|
mov len, limit
|
|
ret
|
|
|
|
def_fn strnlen
|
|
cbz limit, .Lhit_limit
|
|
mov zeroones, #REP8_01
|
|
bic src, srcin, #15
|
|
ands tmp1, srcin, #15
|
|
b.ne .Lmisaligned
|
|
/* Calculate the number of full and partial words -1. */
|
|
sub limit_wd, limit, #1 /* Limit != 0, so no underflow. */
|
|
lsr limit_wd, limit_wd, #4 /* Convert to Qwords. */
|
|
|
|
/* NUL detection works on the principle that (X - 1) & (~X) & 0x80
|
|
(=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and
|
|
can be done in parallel across the entire word. */
|
|
/* The inner loop deals with two Dwords at a time. This has a
|
|
slightly higher start-up cost, but we should win quite quickly,
|
|
especially on cores with a high number of issue slots per
|
|
cycle, as we get much better parallelism out of the operations. */
|
|
|
|
/* Start of critial section -- keep to one 64Byte cache line. */
|
|
.Lloop:
|
|
ldp data1, data2, [src], #16
|
|
.Lrealigned:
|
|
sub tmp1, data1, zeroones
|
|
orr tmp2, data1, #REP8_7f
|
|
sub tmp3, data2, zeroones
|
|
orr tmp4, data2, #REP8_7f
|
|
bic has_nul1, tmp1, tmp2
|
|
bic has_nul2, tmp3, tmp4
|
|
subs limit_wd, limit_wd, #1
|
|
orr tmp1, has_nul1, has_nul2
|
|
ccmp tmp1, #0, #0, pl /* NZCV = 0000 */
|
|
b.eq .Lloop
|
|
/* End of critical section -- keep to one 64Byte cache line. */
|
|
|
|
orr tmp1, has_nul1, has_nul2
|
|
cbz tmp1, .Lhit_limit /* No null in final Qword. */
|
|
|
|
/* We know there's a null in the final Qword. The easiest thing
|
|
to do now is work out the length of the string and return
|
|
MIN (len, limit). */
|
|
|
|
sub len, src, srcin
|
|
cbz has_nul1, .Lnul_in_data2
|
|
#ifdef __AARCH64EB__
|
|
mov data2, data1
|
|
#endif
|
|
sub len, len, #8
|
|
mov has_nul2, has_nul1
|
|
.Lnul_in_data2:
|
|
#ifdef __AARCH64EB__
|
|
/* For big-endian, carry propagation (if the final byte in the
|
|
string is 0x01) means we cannot use has_nul directly. The
|
|
easiest way to get the correct byte is to byte-swap the data
|
|
and calculate the syndrome a second time. */
|
|
rev data2, data2
|
|
sub tmp1, data2, zeroones
|
|
orr tmp2, data2, #REP8_7f
|
|
bic has_nul2, tmp1, tmp2
|
|
#endif
|
|
sub len, len, #8
|
|
rev has_nul2, has_nul2
|
|
clz pos, has_nul2
|
|
add len, len, pos, lsr #3 /* Bits to bytes. */
|
|
cmp len, limit
|
|
csel len, len, limit, ls /* Return the lower value. */
|
|
ret
|
|
|
|
.Lmisaligned:
|
|
/* Deal with a partial first word.
|
|
We're doing two things in parallel here;
|
|
1) Calculate the number of words (but avoiding overflow if
|
|
limit is near ULONG_MAX) - to do this we need to work out
|
|
limit + tmp1 - 1 as a 65-bit value before shifting it;
|
|
2) Load and mask the initial data words - we force the bytes
|
|
before the ones we are interested in to 0xff - this ensures
|
|
early bytes will not hit any zero detection. */
|
|
sub limit_wd, limit, #1
|
|
neg tmp4, tmp1
|
|
cmp tmp1, #8
|
|
|
|
and tmp3, limit_wd, #15
|
|
lsr limit_wd, limit_wd, #4
|
|
mov tmp2, #~0
|
|
|
|
ldp data1, data2, [src], #16
|
|
lsl tmp4, tmp4, #3 /* Bytes beyond alignment -> bits. */
|
|
add tmp3, tmp3, tmp1
|
|
|
|
#ifdef __AARCH64EB__
|
|
/* Big-endian. Early bytes are at MSB. */
|
|
lsl tmp2, tmp2, tmp4 /* Shift (tmp1 & 63). */
|
|
#else
|
|
/* Little-endian. Early bytes are at LSB. */
|
|
lsr tmp2, tmp2, tmp4 /* Shift (tmp1 & 63). */
|
|
#endif
|
|
add limit_wd, limit_wd, tmp3, lsr #4
|
|
|
|
orr data1, data1, tmp2
|
|
orr data2a, data2, tmp2
|
|
|
|
csinv data1, data1, xzr, le
|
|
csel data2, data2, data2a, le
|
|
b .Lrealigned
|
|
.size strnlen, . - .Lstart /* Include pre-padding in size. */
|
|
|
|
#endif
|