4
0
mirror of git://sourceware.org/git/newlib-cygwin.git synced 2025-01-27 01:27:21 +08:00
Kwok Cheung Yeung e18743072b amdgcn: Add vectorized math routines
This implements a set of vectorized math routines to be used by the
compiler auto-vectorizer.  Versions for vectors with 2 lanes up to
64 lanes (in powers of 2) are provided.

These routines are based on the scalar versions of the math routines in
libm/common, libm/math and libm/mathfp.  They make extensive use of the GCC
C vector extensions and GCN-specific builtins in GCC.
2023-01-18 13:22:58 -05:00

128 lines
4.0 KiB
C

/*
* Copyright 2023 Siemens
*
* The authors hereby grant permission to use, copy, modify, distribute,
* and license this software and its documentation for any purpose, provided
* that existing copyright notices are retained in all copies and that this
* notice is included verbatim in any distributions. No written agreement,
* license, or royalty fee is required for any of the authorized uses.
* Modifications to this software may be copyrighted by their authors
* and need not follow the licensing terms described here, provided that
* the new terms are clearly indicated on the first page of each file where
* they apply.
*/
/*
* Copyright (c) 1994-2009 Red Hat, Inc. All rights reserved.
*
* This copyrighted material is made available to anyone wishing to use,
* modify, copy, or redistribute it subject to the terms and conditions
* of the BSD License. This program is distributed in the hope that
* it will be useful, but WITHOUT ANY WARRANTY expressed or implied,
* including the implied warranties of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. A copy of this license is available at
* http://www.opensource.org/licenses. Any Red Hat trademarks that are
* incorporated in the source code or documentation are not subject to
* the BSD License and may only be used or replicated with the express
* permission of Red Hat, Inc.
*/
/******************************************************************
* The following routines are coded directly from the algorithms
* and coefficients given in "Software Manual for the Elementary
* Functions" by William J. Cody, Jr. and William Waite, Prentice
* Hall, 1980.
******************************************************************/
/* Based in newlib/libm/mathfp/sf_sineh.c in Newlib. */
#include "amdgcnmach.h"
v64sf v64sf_expf_aux (v64sf, v64si);
v64si v64sf_numtestf (v64sf);
v64si v64sf_isposf (v64sf);
static const float q[] = { -0.428277109e+2 };
static const float p[] = { -0.713793159e+1,
-0.190333399 };
static const float LNV = 0.6931610107;
static const float INV_V2 = 0.2499930850;
static const float V_OVER2_MINUS1 = 0.1383027787e-4;
#if defined (__has_builtin) && __has_builtin (__builtin_gcn_fabsvf)
DEF_VS_MATH_FUNC (v64sf, sinehf, v64sf x, int cosineh)
{
const float WBAR = 18.55;
FUNCTION_INIT (v64sf);
v64si sgn = VECTOR_INIT (0);
v64si v_cosineh = VECTOR_INIT (cosineh ? -1 : 0);
/* Check for special values. */
v64si num_type = v64sf_numtestf (x);
VECTOR_IF (num_type == NAN, cond)
errno = EDOM;
VECTOR_RETURN (x, cond);
VECTOR_ELSEIF (num_type == INF, cond)
errno = ERANGE;
VECTOR_RETURN (VECTOR_MERGE (VECTOR_INIT (z_infinity_f.f),
VECTOR_INIT (-z_infinity_f.f),
v64sf_isposf (x)),
cond);
VECTOR_ENDIF
v64sf y = __builtin_gcn_fabsvf (x);
if (!cosineh)
VECTOR_COND_MOVE (sgn, VECTOR_INIT (-1), x < 0.0f);
v64sf res;
VECTOR_IF (((y > 1.0f) & ~v_cosineh) | v_cosineh, cond)
VECTOR_IF2 (y > (float) BIGX, cond2, cond)
v64sf w = y - LNV;
/* Check for w > maximum here. */
VECTOR_IF2 (w > (float) BIGX, cond3, cond2)
errno = ERANGE;
VECTOR_RETURN (x, cond3);
VECTOR_ENDIF
v64sf z = v64sf_expf_aux (w, __mask);
VECTOR_COND_MOVE (res, z * (V_OVER2_MINUS1 + 1.0f),
cond2 & (w > WBAR));
VECTOR_ELSE2 (cond2, cond)
v64sf z = v64sf_expf_aux (y, __mask);
if (cosineh) {
VECTOR_COND_MOVE (res, (z + 1 / z) * 0.5f, cond2);
} else {
VECTOR_COND_MOVE (res, (z - 1 / z) * 0.5f, cond2);
}
VECTOR_ENDIF
VECTOR_COND_MOVE (res, -res, sgn);
VECTOR_ELSE (cond)
/* Check for y being too small. */
VECTOR_IF2 (y < z_rooteps_f, cond2, cond);
VECTOR_COND_MOVE (res, x, cond2);
VECTOR_ELSE2 (cond2, cond)
/* Calculate the Taylor series. */
v64sf f = x * x;
v64sf Q = f + q[0];
v64sf P = p[1] * f + p[0];
v64sf R = f * (P / Q);
VECTOR_COND_MOVE (res, x + x * R, cond2);
VECTOR_ENDIF
VECTOR_ENDIF
VECTOR_RETURN (res, NO_COND);
FUNCTION_RETURN;
}
#endif