4
0
mirror of git://sourceware.org/git/newlib-cygwin.git synced 2025-01-27 01:27:21 +08:00
Kwok Cheung Yeung e18743072b amdgcn: Add vectorized math routines
This implements a set of vectorized math routines to be used by the
compiler auto-vectorizer.  Versions for vectors with 2 lanes up to
64 lanes (in powers of 2) are provided.

These routines are based on the scalar versions of the math routines in
libm/common, libm/math and libm/mathfp.  They make extensive use of the GCC
C vector extensions and GCN-specific builtins in GCC.
2023-01-18 13:22:58 -05:00

153 lines
4.8 KiB
C

/*
* Copyright 2023 Siemens
*
* The authors hereby grant permission to use, copy, modify, distribute,
* and license this software and its documentation for any purpose, provided
* that existing copyright notices are retained in all copies and that this
* notice is included verbatim in any distributions. No written agreement,
* license, or royalty fee is required for any of the authorized uses.
* Modifications to this software may be copyrighted by their authors
* and need not follow the licensing terms described here, provided that
* the new terms are clearly indicated on the first page of each file where
* they apply.
*/
/*
* Copyright (c) 1994-2009 Red Hat, Inc. All rights reserved.
*
* This copyrighted material is made available to anyone wishing to use,
* modify, copy, or redistribute it subject to the terms and conditions
* of the BSD License. This program is distributed in the hope that
* it will be useful, but WITHOUT ANY WARRANTY expressed or implied,
* including the implied warranties of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. A copy of this license is available at
* http://www.opensource.org/licenses. Any Red Hat trademarks that are
* incorporated in the source code or documentation are not subject to
* the BSD License and may only be used or replicated with the express
* permission of Red Hat, Inc.
*/
/******************************************************************
* The following routines are coded directly from the algorithms
* and coefficients given in "Software Manual for the Elementary
* Functions" by William J. Cody, Jr. and William Waite, Prentice
* Hall, 1980.
******************************************************************/
/* Based on newlib/libm/mathfp/sf_atangent.c in Newlib. */
#include <float.h>
#include "amdgcnmach.h"
static const float ROOT3 = 1.732050807;
static const float a[] = { 0.0, 0.523598775, 1.570796326,
1.047197551 };
static const float q[] = { 0.1412500740e+1 };
static const float p[] = { -0.4708325141, -0.5090958253e-1 };
#if defined (__has_builtin) \
&& __has_builtin (__builtin_gcn_frexpvf_exp) \
&& __has_builtin (__builtin_gcn_fabsvf)
DEF_VS_MATH_FUNC (v64sf, atangentf, v64sf x, v64sf v, v64sf u, int arctan2)
{
FUNCTION_INIT (v64sf);
v64sf zero = VECTOR_INIT (0.0f);
v64sf res;
v64si branch = VECTOR_INIT (0);
/* Preparation for calculating arctan2. */
if (arctan2)
{
VECTOR_IF (u == 0.0f, cond)
VECTOR_IF2 (v == 0.0f, cond2, cond)
errno = ERANGE;
VECTOR_RETURN (VECTOR_INIT (0.0f), cond2);
VECTOR_ELSE2 (cond2, cond)
VECTOR_COND_MOVE (branch, VECTOR_INIT (-1), cond2);
VECTOR_COND_MOVE (res, VECTOR_INIT ((float) __PI_OVER_TWO), cond2);
VECTOR_ENDIF
VECTOR_ENDIF
VECTOR_IF (~branch, cond)
/* Get the exponent values of the inputs. */
v64si expv = __builtin_gcn_frexpvf_exp (v);
v64si expu = __builtin_gcn_frexpvf_exp (u);
/* See if a divide will overflow. */
v64si e = expv - expu;
VECTOR_IF2 (e > FLT_MAX_EXP, cond2, cond)
VECTOR_COND_MOVE (branch, VECTOR_INIT (-1), cond2);
VECTOR_COND_MOVE (res, VECTOR_INIT ((float) __PI_OVER_TWO), cond2);
VECTOR_ENDIF
/* Also check for underflow. */
VECTOR_IF2 (e < FLT_MIN_EXP, cond2, cond)
VECTOR_COND_MOVE (branch, VECTOR_INIT (-1), cond2);
VECTOR_COND_MOVE (res, zero, cond2);
VECTOR_ENDIF
VECTOR_ENDIF
}
VECTOR_IF (~branch, cond)
v64sf f;
v64si N = VECTOR_INIT (0);
if (arctan2)
f = __builtin_gcn_fabsvf (v / u);
else
f = __builtin_gcn_fabsvf (x);
VECTOR_IF2 (f > 1.0f, cond2, cond)
VECTOR_COND_MOVE (f, 1.0f / f, cond2);
VECTOR_COND_MOVE (N, VECTOR_INIT (2), cond2);
VECTOR_ENDIF
VECTOR_IF2 (f > (2.0f - ROOT3), cond2, cond)
float A = ROOT3 - 1.0f;
VECTOR_COND_MOVE (f, (((A * f - 0.5f) - 0.5f) + f) / (ROOT3 + f),
cond2);
N += cond2 & 1;
VECTOR_ENDIF
/* Check for values that are too small. */
VECTOR_IF2 ((-z_rooteps_f < f) & (f < z_rooteps_f), cond2, cond)
VECTOR_COND_MOVE (res, f, cond2);
/* Calculate the Taylor series. */
VECTOR_ELSE2 (cond2, cond)
v64sf g = f * f;
v64sf P = (p[1] * g + p[0]) * g;
v64sf Q = g + q[0];
v64sf R = P / Q;
VECTOR_COND_MOVE (res, f + f * R, cond2);
VECTOR_ENDIF
VECTOR_COND_MOVE (res, -res, cond & (N > 1));
res += VECTOR_MERGE (VECTOR_INIT (a[1]), zero, cond & (N == 1));
res += VECTOR_MERGE (VECTOR_INIT (a[2]), zero, cond & (N == 2));
res += VECTOR_MERGE (VECTOR_INIT (a[3]), zero, cond & (N == 3));
VECTOR_ENDIF
if (arctan2)
{
/*if (u < 0.0)*/
VECTOR_COND_MOVE (res, (float) __PI - res, u < 0.0f);
/*if (v < 0.0)*/
VECTOR_COND_MOVE (res, -res, v < 0.0f);
}
/*else if (x < 0.0) */
else
VECTOR_COND_MOVE (res, -res, x < 0.0f);
VECTOR_RETURN (res, NO_COND);
FUNCTION_RETURN;
}
#endif