4
0
mirror of git://sourceware.org/git/newlib-cygwin.git synced 2025-01-27 01:27:21 +08:00
Kwok Cheung Yeung e18743072b amdgcn: Add vectorized math routines
This implements a set of vectorized math routines to be used by the
compiler auto-vectorizer.  Versions for vectors with 2 lanes up to
64 lanes (in powers of 2) are provided.

These routines are based on the scalar versions of the math routines in
libm/common, libm/math and libm/mathfp.  They make extensive use of the GCC
C vector extensions and GCN-specific builtins in GCC.
2023-01-18 13:22:58 -05:00

157 lines
5.0 KiB
C

/*
* Copyright 2023 Siemens
*
* The authors hereby grant permission to use, copy, modify, distribute,
* and license this software and its documentation for any purpose, provided
* that existing copyright notices are retained in all copies and that this
* notice is included verbatim in any distributions. No written agreement,
* license, or royalty fee is required for any of the authorized uses.
* Modifications to this software may be copyrighted by their authors
* and need not follow the licensing terms described here, provided that
* the new terms are clearly indicated on the first page of each file where
* they apply.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* Based on newlib/libm/math/kf_tan.c in Newlib. */
#include "amdgcnmach.h"
static const double
pio4 = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
pio4lo= 3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */
T[] = {
3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */
1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */
5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */
2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */
8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */
3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */
1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */
5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */
2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */
7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */
7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */
-1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */
2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */
};
#if defined (__has_builtin) && __has_builtin (__builtin_gcn_fabsv)
static v64df
v64df_kernel_tan (v64df x, v64df y, v64si iy, v64di __mask)
{
FUNCTION_INIT (v64df);
v64si hx;
GET_HIGH_WORD(hx, x, NO_COND);
v64si ix = hx & 0x7fffffff; /* high word of |x| */
VECTOR_IF (ix < 0x3e300000, cond) /* x < 2**-28 */
VECTOR_IF2(__builtin_convertvector (x, v64si)==0, cond2, cond) /* generate inexact */
v64si low;
GET_LOW_WORD (low, x, cond2);
VECTOR_RETURN (1.0 / __builtin_gcn_fabsv (x), ((ix|low)|(iy+1))==0);
VECTOR_RETURN (x, cond2 & (iy == 1));
v64df z, w;
z = w = x + y;
SET_LOW_WORD (z, VECTOR_INIT (0.0), cond2);
v64df v = y - (z - x);
v64df t, a;
t = a = -1.0 / w;
SET_LOW_WORD(t, VECTOR_INIT (0.0), cond2);
v64df s = 1.0 + t * z;
VECTOR_RETURN ( t + a * (s + t * v), cond2);
VECTOR_ENDIF
VECTOR_ENDIF
VECTOR_IF(ix>=0x3FE59428, cond) /* |x|>=0.6744 */
VECTOR_COND_MOVE (x, -x, cond & (hx < 0));
VECTOR_COND_MOVE (y, -y, cond & (hx < 0));
v64df z = pio4-x;
v64df w = pio4lo-y;
VECTOR_COND_MOVE (x, z+w, cond);
VECTOR_COND_MOVE (y, VECTOR_INIT (0.0), cond);
VECTOR_ENDIF
v64df z = x*x;
v64df w = z*z;
/* Break x^5*(T[1]+x^2*T[2]+...) into
* x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
* x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
*/
v64df r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11]))));
v64df v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12])))));
v64df s = z*x;
r = y + z*(s*(r+v)+y);
r += T[0]*s;
w = x+r;
VECTOR_IF(ix>=0x3FE59428, cond)
v = __builtin_convertvector (iy, v64df);
VECTOR_RETURN (__builtin_convertvector (1-((hx>>30)&2), v64df)
* (v-2.0*(x-(w*w/(w+v)-r))), cond);
VECTOR_ENDIF
VECTOR_RETURN (w, iy == 1);
/* if allow error up to 2 ulp,
simply return -1.0/(x+r) here */
/* compute -1.0/(x+r) accurately */
z = w;
SET_LOW_WORD (z, VECTOR_INIT (0), NO_COND);
v = r - (z - x); /* z+v = r+x */
v64df a, t;
t = a = -1.0/w; /* a = -1.0/w */
SET_LOW_WORD(t, VECTOR_INIT (0), NO_COND);
s = 1.0+t*z;
VECTOR_RETURN (t+a*(s+t*v), NO_COND);
FUNCTION_RETURN;
}
static v64si
v64df_rem_pio2 (v64df x, v64df *y)
{
v64df r = x * __INV_PI_OVER_TWO_2_24;
v64si n = (__builtin_convertvector (r, v64si) + 0x800000) >> 24;
x = x - __builtin_convertvector (n, v64df) * __PI_OVER_TWO;
y[0] = x;
y[1] = x - y[0];
return n;
}
DEF_VD_MATH_FUNC (v64df, tan, v64df x)
{
FUNCTION_INIT (v64df);
v64si ix;
GET_HIGH_WORD (ix, x, NO_COND);
/* |x| ~< pi/4 */
ix &= 0x7fffffff;
VECTOR_RETURN (v64df_kernel_tan (x, VECTOR_INIT (0.0), VECTOR_INIT (1), __mask),
ix <= 0x3fe921fb);
/* tan(Inf or NaN) is NaN */
VECTOR_RETURN (x-x, ix >= 0x7ff00000); /* NaN */
/* argument reduction needed */
v64df y[2];
v64si n = v64df_rem_pio2 (x,y);
VECTOR_RETURN (v64df_kernel_tan (y[0], y[1], 1-((n&1)<<1), __mask), // 1 -- n even
NO_COND); // -1 -- n odd
FUNCTION_RETURN;
}
DEF_VARIANTS (tan, df, df)
#endif