4
0
mirror of git://sourceware.org/git/newlib-cygwin.git synced 2025-01-25 16:47:20 +08:00
Jennifer Averett 048ebea981 newlib: Add non LDBL_EQ_DBL math support for aarch64, i386, and x86_64
Rename s_nearbyint.c, s_fdim.c and s_scalbln.c to remove conflicts
    Remove functions that are not needed from above files
    Modify include paths
    Add includes missing in cygwin build
    Add missing types
    Create Makefiles
    Create header files to resolve dependencies between directories
    Modify some instances of unsigned long to uint64_t for 32 bit platforms
    Add HAVE_FPMATH_H
2023-05-16 09:05:36 -05:00

423 lines
11 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* The original code, FreeBSD's old svn r93211, contain the following
* attribution:
*
* This code by P. McIlroy, Oct 1992;
*
* The financial support of UUNET Communications Services is greatfully
* acknowledged.
*
* bsdrc/b_tgamma.c converted to long double by Steven G. Kargl.
*/
/*
* See bsdsrc/t_tgamma.c for implementation details.
*/
#include <float.h>
#if LDBL_MAX_EXP != 0x4000
#error "Unsupported long double format"
#endif
#ifdef __i386__
#include <ieeefp.h>
#endif
#include "../ld/fpmath.h"
#include "math.h"
#include "../ld/math_private.h"
long double sinpil(long double x);
long double cospil(long double x);
/* Used in b_log.c and below. */
struct Double {
long double a;
long double b;
};
#include "b_logl.c"
#include "b_expl.c"
static const double zero = 0.;
static const volatile double tiny = 1e-300;
/*
* x >= 6
*
* Use the asymptotic approximation (Stirling's formula) adjusted for
* equal-ripples:
*
* log(G(x)) ~= (x-0.5)*(log(x)-1) + 0.5(log(2*pi)-1) + 1/x*P(1/(x*x))
*
* Keep extra precision in multiplying (x-.5)(log(x)-1), to avoid
* premature round-off.
*
* Accurate to max(ulp(1/128) absolute, 2^-66 relative) error.
*/
/*
* The following is a decomposition of 0.5 * (log(2*pi) - 1) into the
* first 12 bits in ln2pi_hi and the trailing 64 bits in ln2pi_lo. The
* variables are clearly misnamed.
*/
static const union IEEEl2bits
ln2pi_hiu = LD80C(0xd680000000000000, -2, 4.18945312500000000000e-01L),
ln2pi_lou = LD80C(0xe379b414b596d687, -18, -6.77929532725821967032e-06L);
#define ln2pi_hi (ln2pi_hiu.e)
#define ln2pi_lo (ln2pi_lou.e)
static const union IEEEl2bits
Pa0u = LD80C(0xaaaaaaaaaaaaaaaa, -4, 8.33333333333333333288e-02L),
Pa1u = LD80C(0xb60b60b60b5fcd59, -9, -2.77777777777776516326e-03L),
Pa2u = LD80C(0xd00d00cffbb47014, -11, 7.93650793635429639018e-04L),
Pa3u = LD80C(0x9c09c07c0805343e, -11, -5.95238087960599252215e-04L),
Pa4u = LD80C(0xdca8d31f8e6e5e8f, -11, 8.41749082509607342883e-04L),
Pa5u = LD80C(0xfb4d4289632f1638, -10, -1.91728055205541624556e-03L),
Pa6u = LD80C(0xd15a4ba04078d3f8, -8, 6.38893788027752396194e-03L),
Pa7u = LD80C(0xe877283110bcad95, -6, -2.83771309846297590312e-02L),
Pa8u = LD80C(0x8da97eed13717af8, -3, 1.38341887683837576925e-01L),
Pa9u = LD80C(0xf093b1c1584e30ce, -2, -4.69876818515470146031e-01L);
#define Pa0 (Pa0u.e)
#define Pa1 (Pa1u.e)
#define Pa2 (Pa2u.e)
#define Pa3 (Pa3u.e)
#define Pa4 (Pa4u.e)
#define Pa5 (Pa5u.e)
#define Pa6 (Pa6u.e)
#define Pa7 (Pa7u.e)
#define Pa8 (Pa8u.e)
#define Pa9 (Pa9u.e)
static struct Double
large_gam(long double x)
{
long double p, z, thi, tlo, xhi, xlo;
long double logx;
struct Double u;
z = 1 / (x * x);
p = Pa0 + z * (Pa1 + z * (Pa2 + z * (Pa3 + z * (Pa4 + z * (Pa5 +
z * (Pa6 + z * (Pa7 + z * (Pa8 + z * Pa9))))))));
p = p / x;
u = __log__D(x);
u.a -= 1;
/* Split (x - 0.5) in high and low parts. */
x -= 0.5L;
xhi = (float)x;
xlo = x - xhi;
/* Compute t = (x-.5)*(log(x)-1) in extra precision. */
thi = xhi * u.a;
tlo = xlo * u.a + x * u.b;
/* Compute thi + tlo + ln2pi_hi + ln2pi_lo + p. */
tlo += ln2pi_lo;
tlo += p;
u.a = ln2pi_hi + tlo;
u.a += thi;
u.b = thi - u.a;
u.b += ln2pi_hi;
u.b += tlo;
return (u);
}
/*
* Rational approximation, A0 + x * x * P(x) / Q(x), on the interval
* [1.066.., 2.066..] accurate to 4.25e-19.
*
* Returns r.a + r.b = a0 + (z + c)^2 * p / q, with r.a truncated.
*/
static const union IEEEl2bits
a0_hiu = LD80C(0xe2b6e4153a57746c, -1, 8.85603194410888700265e-01L),
a0_lou = LD80C(0x851566d40f32c76d, -66, 1.40907742727049706207e-20L);
#define a0_hi (a0_hiu.e)
#define a0_lo (a0_lou.e)
static const union IEEEl2bits
P0u = LD80C(0xdb629fb9bbdc1c1d, -2, 4.28486815855585429733e-01L),
P1u = LD80C(0xe6f4f9f5641aa6be, -3, 2.25543885805587730552e-01L),
P2u = LD80C(0xead1bd99fdaf7cc1, -6, 2.86644652514293482381e-02L),
P3u = LD80C(0x9ccc8b25838ab1e0, -8, 4.78512567772456362048e-03L),
P4u = LD80C(0x8f0c4383ef9ce72a, -9, 2.18273781132301146458e-03L),
P5u = LD80C(0xe732ab2c0a2778da, -13, 2.20487522485636008928e-04L),
P6u = LD80C(0xce70b27ca822b297, -16, 2.46095923774929264284e-05L),
P7u = LD80C(0xa309e2e16fb63663, -19, 2.42946473022376182921e-06L),
P8u = LD80C(0xaf9c110efb2c633d, -23, 1.63549217667765869987e-07L),
Q1u = LD80C(0xd4d7422719f48f15, -1, 8.31409582658993993626e-01L),
Q2u = LD80C(0xe13138ea404f1268, -5, -5.49785826915643198508e-02L),
Q3u = LD80C(0xd1c6cc91989352c0, -4, -1.02429960435139887683e-01L),
Q4u = LD80C(0xa7e9435a84445579, -7, 1.02484853505908820524e-02L),
Q5u = LD80C(0x83c7c34db89b7bda, -8, 4.02161632832052872697e-03L),
Q6u = LD80C(0xbed06bf6e1c14e5b, -11, -7.27898206351223022157e-04L),
Q7u = LD80C(0xef05bf841d4504c0, -18, 7.12342421869453515194e-06L),
Q8u = LD80C(0xf348d08a1ff53cb1, -19, 3.62522053809474067060e-06L);
#define P0 (P0u.e)
#define P1 (P1u.e)
#define P2 (P2u.e)
#define P3 (P3u.e)
#define P4 (P4u.e)
#define P5 (P5u.e)
#define P6 (P6u.e)
#define P7 (P7u.e)
#define P8 (P8u.e)
#define Q1 (Q1u.e)
#define Q2 (Q2u.e)
#define Q3 (Q3u.e)
#define Q4 (Q4u.e)
#define Q5 (Q5u.e)
#define Q6 (Q6u.e)
#define Q7 (Q7u.e)
#define Q8 (Q8u.e)
static struct Double
ratfun_gam(long double z, long double c)
{
long double p, q, thi, tlo;
struct Double r;
q = 1 + z * (Q1 + z * (Q2 + z * (Q3 + z * (Q4 + z * (Q5 +
z * (Q6 + z * (Q7 + z * Q8)))))));
p = P0 + z * (P1 + z * (P2 + z * (P3 + z * (P4 + z * (P5 +
z * (P6 + z * (P7 + z * P8)))))));
p = p / q;
/* Split z into high and low parts. */
thi = (float)z;
tlo = (z - thi) + c;
tlo *= (thi + z);
/* Split (z+c)^2 into high and low parts. */
thi *= thi;
q = thi;
thi = (float)thi;
tlo += (q - thi);
/* Split p/q into high and low parts. */
r.a = (float)p;
r.b = p - r.a;
tlo = tlo * p + thi * r.b + a0_lo;
thi *= r.a; /* t = (z+c)^2*(P/Q) */
r.a = (float)(thi + a0_hi);
r.b = ((a0_hi - r.a) + thi) + tlo;
return (r); /* r = a0 + t */
}
/*
* x < 6
*
* Use argument reduction G(x+1) = xG(x) to reach the range [1.066124,
* 2.066124]. Use a rational approximation centered at the minimum
* (x0+1) to ensure monotonicity.
*
* Good to < 1 ulp. (provably .90 ulp; .87 ulp on 1,000,000 runs.)
* It also has correct monotonicity.
*/
static const union IEEEl2bits
xm1u = LD80C(0xec5b0c6ad7c7edc3, -2, 4.61632144968362341254e-01L);
#define x0 (xm1u.e)
static const double
left = -0.3955078125; /* left boundary for rat. approx */
static long double
small_gam(long double x)
{
long double t, y, ym1;
struct Double yy, r;
y = x - 1;
if (y <= 1 + (left + x0)) {
yy = ratfun_gam(y - x0, 0);
return (yy.a + yy.b);
}
r.a = (float)y;
yy.a = r.a - 1;
y = y - 1 ;
r.b = yy.b = y - yy.a;
/* Argument reduction: G(x+1) = x*G(x) */
for (ym1 = y - 1; ym1 > left + x0; y = ym1--, yy.a--) {
t = r.a * yy.a;
r.b = r.a * yy.b + y * r.b;
r.a = (float)t;
r.b += (t - r.a);
}
/* Return r*tgamma(y). */
yy = ratfun_gam(y - x0, 0);
y = r.b * (yy.a + yy.b) + r.a * yy.b;
y += yy.a * r.a;
return (y);
}
/*
* Good on (0, 1+x0+left]. Accurate to 1 ulp.
*/
static long double
smaller_gam(long double x)
{
long double d, rhi, rlo, t, xhi, xlo;
struct Double r;
if (x < x0 + left) {
t = (float)x;
d = (t + x) * (x - t);
t *= t;
xhi = (float)(t + x);
xlo = x - xhi;
xlo += t;
xlo += d;
t = 1 - x0;
t += x;
d = 1 - x0;
d -= t;
d += x;
x = xhi + xlo;
} else {
xhi = (float)x;
xlo = x - xhi;
t = x - x0;
d = - x0 - t;
d += x;
}
r = ratfun_gam(t, d);
d = (float)(r.a / x);
r.a -= d * xhi;
r.a -= d * xlo;
r.a += r.b;
return (d + r.a / x);
}
/*
* x < 0
*
* Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x)).
* At negative integers, return NaN and raise invalid.
*/
static const union IEEEl2bits
piu = LD80C(0xc90fdaa22168c235, 1, 3.14159265358979323851e+00L);
#define pi (piu.e)
static long double
neg_gam(long double x)
{
int sgn = 1;
struct Double lg, lsine;
long double y, z;
y = ceill(x);
if (y == x) /* Negative integer. */
return ((x - x) / zero);
z = y - x;
if (z > 0.5)
z = 1 - z;
y = y / 2;
if (y == ceill(y))
sgn = -1;
if (z < 0.25)
z = sinpil(z);
else
z = cospil(0.5 - z);
/* Special case: G(1-x) = Inf; G(x) may be nonzero. */
if (x < -1753) {
if (x < -1760)
return (sgn * tiny * tiny);
y = expl(lgammal(x) / 2);
y *= y;
return (sgn < 0 ? -y : y);
}
y = 1 - x;
if (1 - y == x)
y = tgammal(y);
else /* 1-x is inexact */
y = - x * tgammal(-x);
if (sgn < 0) y = -y;
return (pi / (y * z));
}
/*
* xmax comes from lgamma(xmax) - emax * log(2) = 0.
* static const float xmax = 35.040095f
* static const double xmax = 171.624376956302725;
* ld80: LD80C(0xdb718c066b352e20, 10, 1.75554834290446291689e+03L),
* ld128: 1.75554834290446291700388921607020320e+03L,
*
* iota is a sloppy threshold to isolate x = 0.
*/
static const double xmax = 1755.54834290446291689;
static const double iota = 0x1p-116;
long double
tgammal(long double x)
{
struct Double u;
ENTERI();
if (x >= 6) {
if (x > xmax)
RETURNI(x / zero);
u = large_gam(x);
RETURNI(__exp__D(u.a, u.b));
}
if (x >= 1 + left + x0)
RETURNI(small_gam(x));
if (x > iota)
RETURNI(smaller_gam(x));
if (x > -iota) {
if (x != 0)
u.a = 1 - tiny; /* raise inexact */
RETURNI(1 / x);
}
if (!isfinite(x))
RETURNI(x - x); /* x is NaN or -Inf */
RETURNI(neg_gam(x));
}