173 lines
8.8 KiB
C
173 lines
8.8 KiB
C
/* -------------------------------------------------------------- */
|
|
/* (C)Copyright 2006,2007, */
|
|
/* International Business Machines Corporation */
|
|
/* All Rights Reserved. */
|
|
/* */
|
|
/* Redistribution and use in source and binary forms, with or */
|
|
/* without modification, are permitted provided that the */
|
|
/* following conditions are met: */
|
|
/* */
|
|
/* - Redistributions of source code must retain the above copyright*/
|
|
/* notice, this list of conditions and the following disclaimer. */
|
|
/* */
|
|
/* - Redistributions in binary form must reproduce the above */
|
|
/* copyright notice, this list of conditions and the following */
|
|
/* disclaimer in the documentation and/or other materials */
|
|
/* provided with the distribution. */
|
|
/* */
|
|
/* - Neither the name of IBM Corporation nor the names of its */
|
|
/* contributors may be used to endorse or promote products */
|
|
/* derived from this software without specific prior written */
|
|
/* permission. */
|
|
/* Redistributions of source code must retain the above copyright */
|
|
/* notice, this list of conditions and the following disclaimer. */
|
|
/* */
|
|
/* Redistributions in binary form must reproduce the above */
|
|
/* copyright notice, this list of conditions and the following */
|
|
/* disclaimer in the documentation and/or other materials */
|
|
/* provided with the distribution. */
|
|
/* */
|
|
/* Neither the name of IBM Corporation nor the names of its */
|
|
/* contributors may be used to endorse or promote products */
|
|
/* derived from this software without specific prior written */
|
|
/* permission. */
|
|
/* */
|
|
/* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND */
|
|
/* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, */
|
|
/* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
|
|
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
|
|
/* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR */
|
|
/* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, */
|
|
/* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT */
|
|
/* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; */
|
|
/* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) */
|
|
/* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN */
|
|
/* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR */
|
|
/* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, */
|
|
/* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
|
|
/* -------------------------------------------------------------- */
|
|
/* PROLOG END TAG zYx */
|
|
#ifdef __SPU__
|
|
#ifndef _ACOSHD2_H_
|
|
#define _ACOSHD2_H_ 1
|
|
|
|
#include <spu_intrinsics.h>
|
|
#include "logd2.h"
|
|
#include "sqrtd2.h"
|
|
|
|
/*
|
|
* FUNCTION
|
|
* vector double _acoshd2(vector double x)
|
|
*
|
|
* DESCRIPTION
|
|
* The acoshd2 function returns a vector containing the hyperbolic
|
|
* arccosines of the corresponding elements of the input vector.
|
|
*
|
|
* We are using the formula:
|
|
* acosh = ln(x + sqrt(x^2 - 1))
|
|
*
|
|
* For x near one, we use the Taylor series:
|
|
*
|
|
* infinity
|
|
* ------
|
|
* - '
|
|
* - k
|
|
* acosh x = - C (x - 1)
|
|
* - k
|
|
* - ,
|
|
* ------
|
|
* k = 0
|
|
*
|
|
*
|
|
* Special Cases:
|
|
* - acosh(1) = +0
|
|
* - acosh(NaN) = NaN
|
|
* - acosh(Infinity) = Infinity
|
|
* - acosh(x < 1) = NaN
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* Taylor Series Coefficients
|
|
* for x around 1.
|
|
*/
|
|
#define ACOSH_TAY01 1.0000000000000000000000000000000000000000000000000000000000000000000000E0 /* 1 / 1 */
|
|
#define ACOSH_TAY02 -8.3333333333333333333333333333333333333333333333333333333333333333333333E-2 /* 1 / 12 */
|
|
#define ACOSH_TAY03 1.8750000000000000000000000000000000000000000000000000000000000000000000E-2 /* 3 / 160 */
|
|
#define ACOSH_TAY04 -5.5803571428571428571428571428571428571428571428571428571428571428571429E-3 /* 5 / 896 */
|
|
#define ACOSH_TAY05 1.8988715277777777777777777777777777777777777777777777777777777777777778E-3 /* 35 / 18432 */
|
|
#define ACOSH_TAY06 -6.9912997159090909090909090909090909090909090909090909090909090909090909E-4 /* 63 / 90112 */
|
|
#define ACOSH_TAY07 2.7113694411057692307692307692307692307692307692307692307692307692307692E-4 /* 231 / 851968 */
|
|
#define ACOSH_TAY08 -1.0910034179687500000000000000000000000000000000000000000000000000000000E-4 /* 143 / 1310720 */
|
|
#define ACOSH_TAY09 4.5124222250545726102941176470588235294117647058823529411764705882352941E-5 /* 6435 / 142606336 */
|
|
#define ACOSH_TAY10 -1.9065643611707185444078947368421052631578947368421052631578947368421053E-5 /* 12155 / 637534208 */
|
|
#define ACOSH_TAY11 8.1936873140789213634672619047619047619047619047619047619047619047619048E-6 /* 46189 / 5637144576 */
|
|
#define ACOSH_TAY12 -3.5705692742181860882302989130434782608695652173913043478260869565217391E-6 /* 88179 / 24696061952 */
|
|
#define ACOSH_TAY13 1.5740259550511837005615234375000000000000000000000000000000000000000000E-6 /* 676039 / 429496729600 */
|
|
#define ACOSH_TAY14 -7.0068819224144573564882631655092592592592592592592592592592592592592593E-7 /* 1300075 / 1855425871872 */
|
|
#define ACOSH_TAY15 3.1453306166503321507881427633351293103448275862068965517241379310344828E-7 /* 5014575 / 15942918602752 */
|
|
#if 0
|
|
#define ACOSH_TAY16 -1.4221629293564136230176494967552923387096774193548387096774193548387097E-7 /* 9694845 / 68169720922112 */
|
|
#define ACOSH_TAY17 6.4711106776113328206437555226412686434659090909090909090909090909090909E-8 /* 100180065 / 1548112371908608 */
|
|
#define ACOSH_TAY18 -2.9609409781171182528071637664522443498883928571428571428571428571428571E-8 /* 116680311 / 3940649673949184 */
|
|
#define ACOSH_TAY19 1.3615438056281793767600509061201198680980785472972972972972972972972973E-8 /* 2268783825 / 166633186212708352 */
|
|
#endif
|
|
|
|
static __inline vector double _acoshd2(vector double x)
|
|
{
|
|
vec_uchar16 dup_even = ((vec_uchar16) { 0,1,2,3, 0,1,2,3, 8,9,10,11, 8,9,10,11 });
|
|
vec_double2 minus_oned = spu_splats(-1.0);
|
|
vec_double2 twod = spu_splats(2.0);
|
|
vec_double2 xminus1;
|
|
vec_float4 xf;
|
|
/* Where we switch from taylor to formula */
|
|
vec_float4 switch_approx = spu_splats(1.15f);
|
|
vec_uint4 use_form;
|
|
vec_double2 result, fresult, mresult;;
|
|
|
|
|
|
xf = spu_roundtf(x);
|
|
xf = spu_shuffle(xf, xf, dup_even);
|
|
|
|
/*
|
|
* Formula:
|
|
* acosh = ln(x + sqrt(x^2 - 1))
|
|
*/
|
|
fresult = _sqrtd2(spu_madd(x, x, minus_oned));
|
|
fresult = spu_add(x, fresult);
|
|
fresult = _logd2(fresult);
|
|
|
|
/*
|
|
* Taylor Series
|
|
*/
|
|
xminus1 = spu_add(x, minus_oned);
|
|
|
|
mresult = spu_madd(xminus1, spu_splats(ACOSH_TAY15), spu_splats(ACOSH_TAY14));
|
|
mresult = spu_madd(xminus1, mresult, spu_splats(ACOSH_TAY13));
|
|
mresult = spu_madd(xminus1, mresult, spu_splats(ACOSH_TAY12));
|
|
mresult = spu_madd(xminus1, mresult, spu_splats(ACOSH_TAY11));
|
|
mresult = spu_madd(xminus1, mresult, spu_splats(ACOSH_TAY10));
|
|
mresult = spu_madd(xminus1, mresult, spu_splats(ACOSH_TAY09));
|
|
mresult = spu_madd(xminus1, mresult, spu_splats(ACOSH_TAY08));
|
|
mresult = spu_madd(xminus1, mresult, spu_splats(ACOSH_TAY07));
|
|
mresult = spu_madd(xminus1, mresult, spu_splats(ACOSH_TAY06));
|
|
mresult = spu_madd(xminus1, mresult, spu_splats(ACOSH_TAY05));
|
|
mresult = spu_madd(xminus1, mresult, spu_splats(ACOSH_TAY04));
|
|
mresult = spu_madd(xminus1, mresult, spu_splats(ACOSH_TAY03));
|
|
mresult = spu_madd(xminus1, mresult, spu_splats(ACOSH_TAY02));
|
|
mresult = spu_madd(xminus1, mresult, spu_splats(ACOSH_TAY01));
|
|
|
|
mresult = spu_mul(mresult, _sqrtd2(spu_mul(xminus1, twod)));
|
|
|
|
/*
|
|
* Select series or formula
|
|
*/
|
|
use_form = spu_cmpgt(xf, switch_approx);
|
|
result = spu_sel(mresult, fresult, (vec_ullong2)use_form);
|
|
|
|
return result;
|
|
}
|
|
|
|
#endif /* _ACOSHD2_H_ */
|
|
#endif /* __SPU__ */
|