4
0
mirror of git://sourceware.org/git/newlib-cygwin.git synced 2025-01-19 04:49:25 +08:00
Jozef Lawrynowicz b14a879d85 Remove matherr, and SVID and X/Open math library configurations
Default math library configuration is now IEEE
2019-01-23 10:46:24 +01:00

451 lines
8.7 KiB
C

/*
Test the library maths functions using trusted precomputed test
vectors.
These vectors were originally generated on a sun3 with a 68881 using
80 bit precision, but ...
Each function is called with a variety of interesting arguments.
Note that many of the polynomials we use behave badly when the
domain is stressed, so the numbers in the vectors depend on what is
useful to test - eg sin(1e30) is pointless - the arg has to be
reduced modulo pi, and after that there's no bits of significance
left to evaluate with - any number would be just as precise as any
other.
*/
#include "test.h"
#include <math.h>
#include <ieeefp.h>
#include <float.h>
#include <math.h>
#include <errno.h>
#include <stdio.h>
int inacc;
int merror;
double mretval = 64;
int traperror = 1;
char *mname;
int verbose;
void translate_to (FILE *file,
double r)
{
__ieee_double_shape_type bits;
bits.value = r;
fprintf(file, "0x%08x, 0x%08x", bits.parts.msw, bits.parts.lsw);
}
int
ffcheck (double is,
one_line_type *p,
char *name,
int serrno,
int merror)
{
/* Make sure the answer isn't to far wrong from the correct value */
__ieee_double_shape_type correct, isbits;
int mag;
isbits.value = is;
correct.parts.msw = p->qs[0].msw;
correct.parts.lsw = p->qs[0].lsw;
mag = mag_of_error(correct.value, is);
if (mag < p->error_bit)
{
inacc ++;
printf("%s:%d, inaccurate answer: bit %d (%08x%08x %08x%08x) (%g %g)\n",
name, p->line, mag,
correct.parts.msw,
correct.parts.lsw,
isbits.parts.msw,
isbits.parts.lsw,
correct.value, is);
}
#if 0
if (p->qs[0].merror != merror)
{
/* Beware, matherr doesn't exist anymore. */
printf("testing %s_vec.c:%d, matherr wrong: %d %d\n",
name, p->line, merror, p->qs[0].merror);
}
if (p->qs[0].errno_val != errno)
{
printf("testing %s_vec.c:%d, errno wrong: %d %d\n",
name, p->line, errno, p->qs[0].errno_val);
}
#endif
return mag;
}
double
thedouble (long msw,
long lsw)
{
__ieee_double_shape_type x;
x.parts.msw = msw;
x.parts.lsw = lsw;
return x.value;
}
int calc;
int reduce;
frontline (FILE *f,
int mag,
one_line_type *p,
double result,
int merror,
int errno,
char *args,
char *name)
{
if (reduce && p->error_bit < mag)
{
fprintf(f, "{%2d,", p->error_bit);
}
else
{
fprintf(f, "{%2d,",mag);
}
fprintf(f,"%2d,%3d,", merror,errno);
fprintf(f, "__LINE__, ");
if (calc)
{
translate_to(f, result);
}
else
{
translate_to(f, thedouble(p->qs[0].msw, p->qs[0].lsw));
}
fprintf(f, ", ");
fprintf(f,"0x%08x, 0x%08x", p->qs[1].msw, p->qs[1].lsw);
if (args[2])
{
fprintf(f, ", ");
fprintf(f,"0x%08x, 0x%08x", p->qs[2].msw, p->qs[2].lsw);
}
fprintf(f,"}, /* %g=f(%g",result,
thedouble(p->qs[1].msw, p->qs[1].lsw));
if (args[2])
{
fprintf(f,", %g", thedouble(p->qs[2].msw,p->qs[2].lsw));
}
fprintf(f, ")*/\n");
}
finish (FILE *f,
int vector,
double result,
one_line_type *p,
char *args,
char *name)
{
int mag;
mag = ffcheck(result, p,name, merror, errno);
if (vector)
{
frontline(f, mag, p, result, merror, errno, args , name);
}
}
int redo;
run_vector_1 (int vector,
one_line_type *p,
char *func,
char *name,
char *args)
{
FILE *f;
int mag;
double result;
if (vector)
{
VECOPEN(name, f);
if (redo)
{
double k;
for (k = -.2; k < .2; k+= 0.00132)
{
fprintf(f,"{1,1, 1,1, 0,0,0x%08x,0x%08x, 0x%08x, 0x%08x},\n",
k,k+4);
}
for (k = -1.2; k < 1.2; k+= 0.01)
{
fprintf(f,"{1,1, 1,1, 0,0,0x%08x,0x%08x, 0x%08x, 0x%08x},\n",
k,k+4);
}
for (k = -M_PI *2; k < M_PI *2; k+= M_PI/2)
{
fprintf(f,"{1,1, 1,1, 0,0,0x%08x,0x%08x, 0x%08x, 0x%08x},\n",
k,k+4);
}
for (k = -30; k < 30; k+= 1.7)
{
fprintf(f,"{2,2, 1,1, 0,0, 0x%08x,0x%08x, 0x%08x, 0x%08x},\n",
k,k+4);
}
VECCLOSE(f, name, args);
return;
}
}
newfunc(name);
while (p->line)
{
double arg1 = thedouble(p->qs[1].msw, p->qs[1].lsw);
double arg2 = thedouble(p->qs[2].msw, p->qs[2].lsw);
double r;
double rf;
errno = 0;
merror = 0;
mname = 0;
line(p->line);
merror = 0;
errno = 123;
if (strcmp(args,"dd")==0)
{
typedef double (*pdblfunc) (double);
/* Double function returning a double */
result = ((pdblfunc)(func))(arg1);
finish(f,vector, result, p, args, name);
}
else if (strcmp(args,"ff")==0)
{
float arga;
double a;
typedef float (*pdblfunc) (float);
/* Double function returning a double */
if (arg1 < FLT_MAX )
{
arga = arg1;
result = ((pdblfunc)(func))(arga);
finish(f, vector, result, p,args, name);
}
}
else if (strcmp(args,"ddd")==0)
{
typedef double (*pdblfunc) (double,double);
result = ((pdblfunc)(func))(arg1,arg2);
finish(f, vector, result, p,args, name);
}
else if (strcmp(args,"fff")==0)
{
double a,b;
float arga;
float argb;
typedef float (*pdblfunc) (float,float);
if (arg1 < FLT_MAX && arg2 < FLT_MAX)
{
arga = arg1;
argb = arg2;
result = ((pdblfunc)(func))(arga, argb);
finish(f, vector, result, p,args, name);
}
}
else if (strcmp(args,"did")==0)
{
typedef double (*pdblfunc) (int,double);
result = ((pdblfunc)(func))((int)arg1,arg2);
finish(f, vector, result, p,args, name);
}
else if (strcmp(args,"fif")==0)
{
double a,b;
float arga;
float argb;
typedef float (*pdblfunc) (int,float);
if (arg1 < FLT_MAX && arg2 < FLT_MAX)
{
arga = arg1;
argb = arg2;
result = ((pdblfunc)(func))((int)arga, argb);
finish(f, vector, result, p,args, name);
}
}
p++;
}
if (vector)
{
VECCLOSE(f, name, args);
}
}
void
test_math (void)
{
test_acos(0);
test_acosf(0);
test_acosh(0);
test_acoshf(0);
test_asin(0);
test_asinf(0);
test_asinh(0);
test_asinhf(0);
test_atan(0);
test_atan2(0);
test_atan2f(0);
test_atanf(0);
test_atanh(0);
test_atanhf(0);
test_ceil(0);
test_ceilf(0);
test_cos(0);
test_cosf(0);
test_cosh(0);
test_coshf(0);
test_erf(0);
test_erfc(0);
test_erfcf(0);
test_erff(0);
test_exp(0);
test_expf(0);
test_fabs(0);
test_fabsf(0);
test_floor(0);
test_floorf(0);
test_fmod(0);
test_fmodf(0);
test_gamma(0);
test_gammaf(0);
test_hypot(0);
test_hypotf(0);
test_j0(0);
test_j0f(0);
test_j1(0);
test_j1f(0);
test_jn(0);
test_jnf(0);
test_log(0);
test_log10(0);
test_log10f(0);
test_log1p(0);
test_log1pf(0);
test_log2(0);
test_log2f(0);
test_logf(0);
test_sin(0);
test_sinf(0);
test_sinh(0);
test_sinhf(0);
test_sqrt(0);
test_sqrtf(0);
test_tan(0);
test_tanf(0);
test_tanh(0);
test_tanhf(0);
test_y0(0);
test_y0f(0);
test_y1(0);
test_y1f(0);
test_y1f(0);
test_ynf(0);
}
/* These have to be played with to get to compile on machines which
don't have the fancy <foo>f entry points
*/
#if 0
float cosf (float a) { return cos((double)a); }
float sinf (float a) { return sin((double)a); }
float log1pf (float a) { return log1p((double)a); }
float tanf (float a) { return tan((double)a); }
float ceilf (float a) { return ceil(a); }
float floorf (float a) { return floor(a); }
#endif
/*ndef HAVE_FLOAT*/
#if 0
float fmodf(a,b) float a,b; { return fmod(a,b); }
float hypotf(a,b) float a,b; { return hypot(a,b); }
float acosf(a) float a; { return acos(a); }
float acoshf(a) float a; { return acosh(a); }
float asinf(a) float a; { return asin(a); }
float asinhf(a) float a; { return asinh(a); }
float atanf(a) float a; { return atan(a); }
float atanhf(a) float a; { return atanh(a); }
float coshf(a) float a; { return cosh(a); }
float erff(a) float a; { return erf(a); }
float erfcf(a) float a; { return erfc(a); }
float expf(a) float a; { return exp(a); }
float fabsf(a) float a; { return fabs(a); }
float gammaf(a) float a; { return gamma(a); }
float j0f(a) float a; { return j0(a); }
float j1f(a) float a; { return j1(a); }
float log10f(a) float a; { return log10(a); }
float logf(a) float a; { return log(a); }
float sinhf(a) float a; { return sinh(a); }
float sqrtf(a) float a; { return sqrt(a); }
float tanhf(a) float a; { return tanh(a); }
float y0f(a) float a; { return y0(a); }
float y1f(a) float a; { return y1(a); }
#endif