mirror of
git://sourceware.org/git/newlib-cygwin.git
synced 2025-01-19 04:49:25 +08:00
792e51b721
This patch adds the long double functions missing in newlib to Cygwin. Apart from some self-written additions (exp10l, finite{f,l}, isinf{f,l}, isnan{f,l}, pow10l) the files are taken from the Mingw-w64 math lib. Minor changes were required, e.g. substitue _WIN64 with __x86_64__ and fixing __FLT_RPT_DOMAIN/__FLT_RPT_ERANGE for Cygwin. Cygwin: * math: New subdir with math functions. * Makefile.in (VPATH): Add math subdir. (MATH_OFILES): List of object files collected from building files in math subdir. (DLL_OFILES): Add $(MATH_OFILES). ${CURDIR}/libm.a: Add $(MATH_OFILES) to build. * common.din: Add new functions from math subdir. * i686.din: Align to new math subdir. Remove functions now commonly available. * x86_64.din: Ditto. * math.h: math.h wrapper to define mingw structs used in some files in math subdir. * include/cygwin/version.h: Bump API minor version. newlib: * libc/include/complex.h: Add prototypes for complex long double functions. Only define for Cygwin. * libc/include/math.h: Additionally enable prototypes of long double functions for Cygwin. Add Cygwin-only prototypes for dreml, sincosl, exp10l and pow10l. Explain why we don't add them to newlib. * libc/include/tgmath.h: Enable long double handling on Cygwin. Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
93 lines
2.0 KiB
C
93 lines
2.0 KiB
C
/**
|
|
* This file has no copyright assigned and is placed in the Public Domain.
|
|
* This file is part of the mingw-w64 runtime package.
|
|
* No warranty is given; refer to the file DISCLAIMER.PD within this package.
|
|
*/
|
|
#include "cephes_mconf.h"
|
|
#ifndef _SET_ERRNO
|
|
#define _SET_ERRNO(x)
|
|
#endif
|
|
|
|
#ifdef UNK
|
|
static uLD P[] = {
|
|
{ { -6.8473739392677100872869E-5L } },
|
|
{ { -9.5658283111794641589011E-1L } },
|
|
{ { -8.4053568599672284488465E1L } },
|
|
{ { -1.3080425704712825945553E3L } }
|
|
};
|
|
static uLD Q[] = {
|
|
{ { 9.6259501838840336946872E1L } },
|
|
{ { 1.8218117903645559060232E3L } },
|
|
{ { 3.9241277114138477845780E3L } }
|
|
};
|
|
#endif
|
|
|
|
#ifdef IBMPC
|
|
static uLD P[] = {
|
|
{ { 0xd2a4,0x1b0c,0x8f15,0x8f99,0xbff1, 0, 0, 0 } },
|
|
{ { 0x5959,0x9111,0x9cc7,0xf4e2,0xbffe, 0, 0, 0 } },
|
|
{ { 0xb576,0xef5e,0x6d57,0xa81b,0xc005, 0, 0, 0 } },
|
|
{ { 0xe3be,0xbfbd,0x5cbc,0xa381,0xc009, 0, 0, 0 } }
|
|
};
|
|
static uLD Q[] = {
|
|
{ { 0x687f,0xce24,0xdd6c,0xc084,0x4005, 0, 0, 0 } },
|
|
{ { 0x3793,0xc95f,0xfa2f,0xe3b9,0x4009, 0, 0, 0 } },
|
|
{ { 0xd5a2,0x1f9c,0x0b1b,0xf542,0x400a, 0, 0, 0 } }
|
|
};
|
|
#endif
|
|
|
|
#ifdef MIEEE
|
|
static uLD P[] = {
|
|
{ { 0xbff10000,0x8f998f15,0x1b0cd2a4, 0 } },
|
|
{ { 0xbffe0000,0xf4e29cc7,0x91115959, 0 } },
|
|
{ { 0xc0050000,0xa81b6d57,0xef5eb576, 0 } },
|
|
{ { 0xc0090000,0xa3815cbc,0xbfbde3be, 0 } }
|
|
};
|
|
static uLD Q[] = {
|
|
{ { 0x40050000,0xc084dd6c,0xce24687f, 0 } },
|
|
{ { 0x40090000,0xe3b9fa2f,0xc95f3793, 0 } },
|
|
{ { 0x400a0000,0xf5420b1b,0x1f9cd5a2, 0 } }
|
|
};
|
|
#endif
|
|
|
|
long double tanhl(long double x)
|
|
{
|
|
long double s, z;
|
|
|
|
#ifdef MINUSZERO
|
|
if (x == 0.0L)
|
|
return (x);
|
|
#endif
|
|
if (isnanl(x))
|
|
{
|
|
_SET_ERRNO (EDOM);
|
|
return x;
|
|
}
|
|
|
|
z = fabsl(x);
|
|
if (z > 0.5L * MAXLOGL)
|
|
{
|
|
_SET_ERRNO (ERANGE);
|
|
if (x > 0)
|
|
return (1.0L);
|
|
else
|
|
return (-1.0L);
|
|
}
|
|
if (z >= 0.625L)
|
|
{
|
|
s = expl(2.0*z);
|
|
z = 1.0L - 2.0/(s + 1.0L);
|
|
if (x < 0)
|
|
z = -z;
|
|
}
|
|
else
|
|
{
|
|
s = x * x;
|
|
z = polevll( s, P, 3 )/p1evll(s, Q, 3);
|
|
z = x * s * z;
|
|
z = x + z;
|
|
}
|
|
return (z);
|
|
}
|
|
|