169 lines
7.3 KiB
C
169 lines
7.3 KiB
C
/* -------------------------------------------------------------- */
|
|
/* (C)Copyright 2001,2008, */
|
|
/* International Business Machines Corporation, */
|
|
/* Sony Computer Entertainment, Incorporated, */
|
|
/* Toshiba Corporation, */
|
|
/* */
|
|
/* All Rights Reserved. */
|
|
/* */
|
|
/* Redistribution and use in source and binary forms, with or */
|
|
/* without modification, are permitted provided that the */
|
|
/* following conditions are met: */
|
|
/* */
|
|
/* - Redistributions of source code must retain the above copyright*/
|
|
/* notice, this list of conditions and the following disclaimer. */
|
|
/* */
|
|
/* - Redistributions in binary form must reproduce the above */
|
|
/* copyright notice, this list of conditions and the following */
|
|
/* disclaimer in the documentation and/or other materials */
|
|
/* provided with the distribution. */
|
|
/* */
|
|
/* - Neither the name of IBM Corporation nor the names of its */
|
|
/* contributors may be used to endorse or promote products */
|
|
/* derived from this software without specific prior written */
|
|
/* permission. */
|
|
/* */
|
|
/* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND */
|
|
/* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, */
|
|
/* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
|
|
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
|
|
/* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR */
|
|
/* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, */
|
|
/* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT */
|
|
/* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; */
|
|
/* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) */
|
|
/* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN */
|
|
/* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR */
|
|
/* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, */
|
|
/* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
|
|
/* -------------------------------------------------------------- */
|
|
/* PROLOG END TAG zYx */
|
|
#ifdef __SPU__
|
|
|
|
#ifndef _RECIPD2_H_
|
|
#define _RECIPD2_H_ 1
|
|
|
|
#include <spu_intrinsics.h>
|
|
|
|
|
|
/*
|
|
* FUNCTION
|
|
* vector double _recipd2(vector double value)
|
|
*
|
|
* DESCRIPTION
|
|
* The _recipd2 function inverts "value" and returns the result.
|
|
* Computation is performed using the single precision reciprocal
|
|
* estimate and interpolate instructions to produce a 12 accurate
|
|
* estimate.
|
|
*
|
|
* One (1) iteration of a Newton-Raphson is performed to improve
|
|
* accuracy to single precision floating point. Two additional double
|
|
* precision iterations are needed to achieve a full double
|
|
* preicision result.
|
|
*
|
|
* The Newton-Raphson iteration is of the form:
|
|
* a) X[i+1] = X[i] * (2.0 - b*X[i])
|
|
* or
|
|
* b) X[i+1] = X[i] + X[i]*(1.0 - X[i]*b)
|
|
* where b is the input value to be inverted
|
|
*
|
|
* The later (b) form improves the accuracy to 99.95% correctly rounded.
|
|
*/
|
|
static __inline vector double _recipd2(vector double value_in)
|
|
{
|
|
vec_float4 x0;
|
|
vec_float4 value;
|
|
vec_float4 one = spu_splats(1.0f);
|
|
vec_double2 one_d = spu_splats(1.0);
|
|
vec_double2 x1, x2, x3;
|
|
vec_double2 scale;
|
|
vec_double2 exp, value_d;
|
|
vec_ullong2 expmask = spu_splats(0x7FF0000000000000ULL);
|
|
vec_ullong2 is0inf;
|
|
|
|
#ifdef __SPU_EDP__
|
|
vec_ullong2 isdenorm;
|
|
vec_ullong2 expmask_minus1 = spu_splats(0x7FE0000000000000ULL);
|
|
|
|
/* Determine special input values. For example, if the input is a denorm, infinity or 0 */
|
|
|
|
isdenorm = spu_testsv(value_in, (SPU_SV_POS_DENORM | SPU_SV_NEG_DENORM));
|
|
is0inf = spu_testsv(value_in, (SPU_SV_NEG_ZERO | SPU_SV_POS_ZERO |
|
|
SPU_SV_NEG_INFINITY | SPU_SV_POS_INFINITY));
|
|
|
|
/* Scale the divisor to correct for double precision floating
|
|
* point exponents that are out of single precision range.
|
|
*/
|
|
exp = spu_and(value_in, (vec_double2)expmask);
|
|
scale = spu_xor(exp, (vec_double2)spu_sel(expmask, expmask_minus1, isdenorm));
|
|
value_d = spu_mul(value_in, scale);
|
|
value = spu_roundtf(value_d);
|
|
|
|
/* Perform reciprocal with 1 single precision and 2 double precision
|
|
* Newton-Raphson iterations.
|
|
*/
|
|
x0 = spu_re(value);
|
|
x1 = spu_extend(spu_madd(spu_nmsub(value, x0, one), x0, x0));
|
|
x2 = spu_madd(spu_nmsub(value_d, x1, one_d), x1, x1);
|
|
x3 = spu_madd(spu_nmsub(value_d, x2, one_d), x2, x2);
|
|
x3 = spu_sel(spu_mul(x3, scale), spu_xor(value_in, (vector double)expmask), is0inf);
|
|
|
|
#else /* !__SPU_EDP__ */
|
|
|
|
vec_uint4 isinf, iszero, isdenorm0;
|
|
vec_double2 value_abs;
|
|
vec_double2 sign = spu_splats(-0.0);
|
|
vec_double2 denorm_scale = (vec_double2)spu_splats(0x4330000000000000ULL);
|
|
vec_double2 exp_53 = (vec_double2)spu_splats(0x0350000000000000ULL);
|
|
vec_uchar16 splat_hi = (vec_uchar16){0,1,2,3, 0,1,2,3, 8,9,10,11, 8,9,10,11};
|
|
vec_uchar16 swap = (vec_uchar16){4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11};
|
|
|
|
value_abs = spu_andc(value_in, sign);
|
|
exp = spu_and(value_in, (vec_double2)expmask);
|
|
|
|
/* Determine if the input is a special value. These include:
|
|
* denorm - then we must coerce it to a normal value.
|
|
* zero - then we must return an infinity
|
|
* infinity - then we must return a zero.
|
|
*/
|
|
isdenorm0 = spu_cmpeq(spu_shuffle((vec_uint4)exp, (vec_uint4)exp, splat_hi), 0);
|
|
|
|
isinf = spu_cmpeq((vec_uint4)value_abs, (vec_uint4)expmask);
|
|
iszero = spu_cmpeq((vec_uint4)value_abs, 0);
|
|
isinf = spu_and(isinf, spu_shuffle(isinf, isinf, swap));
|
|
iszero = spu_and(iszero, spu_shuffle(iszero, iszero, swap));
|
|
is0inf = (vec_ullong2)spu_or(isinf, iszero);
|
|
|
|
/* If the inputs is a denorm, we must first convert it to a normal number since
|
|
* arithmetic operations on denormals produces 0 on Cell/B.E.
|
|
*/
|
|
value_d = spu_sub(spu_or(value_abs, exp_53), exp_53);
|
|
value_d = spu_sel(value_abs, value_d, (vec_ullong2)isdenorm0);
|
|
|
|
/* Scale the divisor to correct for double precision floating
|
|
* point exponents that are out of single precision range.
|
|
*/
|
|
scale = spu_xor(spu_and(value_d, (vec_double2)expmask), (vec_double2)expmask);
|
|
value_d = spu_mul(value_d, scale);
|
|
value = spu_roundtf(value_d);
|
|
|
|
/* Perform reciprocal with 1 single precision and 2 double precision
|
|
* Newton-Raphson iterations. The bias is removed after the single
|
|
* precision iteration.
|
|
*/
|
|
x0 = spu_re(value);
|
|
x1 = spu_extend(spu_madd(spu_nmsub(value, x0, one), x0, x0));
|
|
x2 = spu_madd(spu_nmsub(value_d, x1, one_d), x1, x1);
|
|
x3 = spu_madd(spu_nmsub(value_d, x2, one_d), x2, x2);
|
|
x3 = spu_mul(x3, spu_sel(scale, value_in, (vec_ullong2)sign));
|
|
x3 = spu_sel(x3, spu_mul(x3, denorm_scale), (vec_ullong2)isdenorm0);
|
|
x3 = spu_sel(x3, spu_xor(value_in, (vector double)expmask), is0inf);
|
|
|
|
#endif /* __SPU_EDP__ */
|
|
|
|
return (x3);
|
|
}
|
|
|
|
#endif /* _RECIPD2_H_ */
|
|
#endif /* __SPU__ */
|