183 lines
8.5 KiB
C
183 lines
8.5 KiB
C
/* -------------------------------------------------------------- */
|
|
/* (C)Copyright 2007,2008, */
|
|
/* International Business Machines Corporation */
|
|
/* All Rights Reserved. */
|
|
/* */
|
|
/* Redistribution and use in source and binary forms, with or */
|
|
/* without modification, are permitted provided that the */
|
|
/* following conditions are met: */
|
|
/* */
|
|
/* - Redistributions of source code must retain the above copyright*/
|
|
/* notice, this list of conditions and the following disclaimer. */
|
|
/* */
|
|
/* - Redistributions in binary form must reproduce the above */
|
|
/* copyright notice, this list of conditions and the following */
|
|
/* disclaimer in the documentation and/or other materials */
|
|
/* provided with the distribution. */
|
|
/* */
|
|
/* - Neither the name of IBM Corporation nor the names of its */
|
|
/* contributors may be used to endorse or promote products */
|
|
/* derived from this software without specific prior written */
|
|
/* permission. */
|
|
/* */
|
|
/* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND */
|
|
/* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, */
|
|
/* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
|
|
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
|
|
/* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR */
|
|
/* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, */
|
|
/* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT */
|
|
/* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; */
|
|
/* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) */
|
|
/* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN */
|
|
/* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR */
|
|
/* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, */
|
|
/* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
|
|
/* -------------------------------------------------------------- */
|
|
/* PROLOG END TAG zYx */
|
|
#ifdef __SPU__
|
|
#ifndef _ASINHF4_H_
|
|
#define _ASINHF4_H_ 1
|
|
|
|
#include <spu_intrinsics.h>
|
|
|
|
#include "logf4.h"
|
|
#include "sqrtf4.h"
|
|
|
|
/*
|
|
* FUNCTION
|
|
* vector float _asinhf4(vector float x)
|
|
*
|
|
* DESCRIPTION
|
|
* The asinhf4 function returns a vector containing the hyperbolic
|
|
* arcsines of the corresponding elements of the input vector.
|
|
*
|
|
* We are using the formula:
|
|
* asinh = ln(|x| + sqrt(x^2 + 1))
|
|
* and the anti-symmetry of asinh.
|
|
*
|
|
* For x near zero, we use the Taylor series:
|
|
*
|
|
* infinity
|
|
* ------
|
|
* - ' P (0)
|
|
* - k-1 k
|
|
* asinh x = - ----- x
|
|
* - k
|
|
* - ,
|
|
* ------
|
|
* k = 1
|
|
*
|
|
* Special Cases:
|
|
* - asinh(+0) returns +0
|
|
* - asinh(-0) returns -0
|
|
* - Normally, asinh(+/- infinity) returns +/- infinity,
|
|
* but on the SPU, single-precision infinity is not supported,
|
|
* so it is treated as a normal number here.
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* Maclaurin Series Coefficients
|
|
* for x near 0.
|
|
*/
|
|
#define ASINH_MAC01 1.0000000000000000000000000000000000000000000000000000000000000000000000E0
|
|
#define ASINH_MAC03 -1.6666666666666666666666666666666666666666666666666666666666666666666667E-1
|
|
#define ASINH_MAC05 7.5000000000000000000000000000000000000000000000000000000000000000000000E-2
|
|
#define ASINH_MAC07 -4.4642857142857142857142857142857142857142857142857142857142857142857143E-2
|
|
#define ASINH_MAC09 3.0381944444444444444444444444444444444444444444444444444444444444444444E-2
|
|
#define ASINH_MAC11 -2.2372159090909090909090909090909090909090909090909090909090909090909091E-2
|
|
#define ASINH_MAC13 1.7352764423076923076923076923076923076923076923076923076923076923076923E-2
|
|
#define ASINH_MAC15 -1.3964843750000000000000000000000000000000000000000000000000000000000000E-2
|
|
#define ASINH_MAC17 1.1551800896139705882352941176470588235294117647058823529411764705882353E-2
|
|
#define ASINH_MAC19 -9.7616095291940789473684210526315789473684210526315789473684210526315789E-3
|
|
#define ASINH_MAC21 8.3903358096168154761904761904761904761904761904761904761904761904761905E-3
|
|
#define ASINH_MAC23 -7.3125258735988451086956521739130434782608695652173913043478260869565217E-3
|
|
#define ASINH_MAC25 6.4472103118896484375000000000000000000000000000000000000000000000000000E-3
|
|
#define ASINH_MAC27 -5.7400376708419234664351851851851851851851851851851851851851851851851852E-3
|
|
#define ASINH_MAC29 5.1533096823199041958512931034482758620689655172413793103448275862068966E-3
|
|
#define ASINH_MAC31 -4.6601434869150961599042338709677419354838709677419354838709677419354839E-3
|
|
#if 0
|
|
#define ASINH_MAC33 4.2409070936793630773370916193181818181818181818181818181818181818181818E-3
|
|
#define ASINH_MAC35 -3.8809645588376692363194056919642857142857142857142857142857142857142857E-3
|
|
#define ASINH_MAC37 3.5692053938259345454138678473395270270270270270270270270270270270270270E-3
|
|
#define ASINH_MAC39 -3.2970595034734847453924325796274038461538461538461538461538461538461538E-3
|
|
#define ASINH_MAC41 3.0578216492580306693548109473251714939024390243902439024390243902439024E-3
|
|
#define ASINH_MAC43 -2.8461784011089421678767647854117460029069767441860465116279069767441860E-3
|
|
#endif
|
|
|
|
|
|
static __inline vector float _asinhf4(vector float x)
|
|
{
|
|
vec_float4 sign_mask = spu_splats(-0.0f);
|
|
vec_float4 onef = spu_splats(1.0f);
|
|
vec_uint4 oneu = spu_splats(1u);
|
|
vec_uint4 twou = spu_splats(2u);
|
|
vec_uint4 threeu = spu_splats(3u);
|
|
vec_float4 ln2 = spu_splats(6.931471805599453094172321E-1f);
|
|
vec_float4 largef = spu_splats(9.21e18f);
|
|
vec_float4 result, fresult, mresult;
|
|
vec_float4 xabs, xsqu;
|
|
/* Where we switch from maclaurin to formula */
|
|
vec_float4 switch_approx = spu_splats(0.74f);
|
|
vec_float4 trunc_part2 = spu_splats(20.0f);
|
|
vec_uint4 truncadd;
|
|
vec_uint4 islarge;
|
|
vec_uint4 use_form;
|
|
|
|
xabs = spu_andc(x, sign_mask);
|
|
xsqu = spu_mul(x, x);
|
|
islarge = spu_cmpgt(xabs, largef);
|
|
|
|
/*
|
|
* Formula:
|
|
* asinh = ln(|x| + sqrt(x^2 + 1))
|
|
*/
|
|
|
|
vec_float4 logarg = spu_add(xabs, _sqrtf4(spu_madd(xabs, xabs, onef)));
|
|
logarg = spu_sel(logarg, xabs, islarge);
|
|
fresult = _logf4(logarg);
|
|
fresult = spu_sel(fresult, spu_add(fresult, ln2), islarge);
|
|
|
|
/*
|
|
* Maclaurin Series
|
|
*/
|
|
mresult = spu_madd(xsqu, spu_splats((float)ASINH_MAC31), spu_splats((float)ASINH_MAC29));
|
|
mresult = spu_madd(xsqu, mresult, spu_splats((float)ASINH_MAC27));
|
|
mresult = spu_madd(xsqu, mresult, spu_splats((float)ASINH_MAC25));
|
|
mresult = spu_madd(xsqu, mresult, spu_splats((float)ASINH_MAC23));
|
|
mresult = spu_madd(xsqu, mresult, spu_splats((float)ASINH_MAC21));
|
|
mresult = spu_madd(xsqu, mresult, spu_splats((float)ASINH_MAC19));
|
|
mresult = spu_madd(xsqu, mresult, spu_splats((float)ASINH_MAC17));
|
|
mresult = spu_madd(xsqu, mresult, spu_splats((float)ASINH_MAC15));
|
|
mresult = spu_madd(xsqu, mresult, spu_splats((float)ASINH_MAC13));
|
|
mresult = spu_madd(xsqu, mresult, spu_splats((float)ASINH_MAC11));
|
|
mresult = spu_madd(xsqu, mresult, spu_splats((float)ASINH_MAC09));
|
|
mresult = spu_madd(xsqu, mresult, spu_splats((float)ASINH_MAC07));
|
|
mresult = spu_madd(xsqu, mresult, spu_splats((float)ASINH_MAC05));
|
|
mresult = spu_madd(xsqu, mresult, spu_splats((float)ASINH_MAC03));
|
|
mresult = spu_madd(xsqu, mresult, spu_splats((float)ASINH_MAC01));
|
|
mresult = spu_mul(xabs, mresult);
|
|
|
|
/*
|
|
* Choose between series and formula
|
|
*/
|
|
use_form = spu_cmpgt(xabs, switch_approx);
|
|
result = spu_sel(mresult, fresult, use_form);
|
|
|
|
/*
|
|
* Truncation correction on spu
|
|
*/
|
|
truncadd = spu_sel(oneu, threeu, use_form);
|
|
truncadd = spu_sel(truncadd, twou, spu_cmpgt(xabs, trunc_part2));
|
|
result = (vec_float4)spu_add((vec_uint4)result, truncadd);
|
|
|
|
/* Preserve sign - asinh is anti-symmetric */
|
|
result = spu_sel(result, x, (vec_uint4)sign_mask);
|
|
|
|
return result;
|
|
}
|
|
|
|
#endif /* _ASINHF4_H_ */
|
|
#endif /* __SPU__ */
|