mirror of
git://sourceware.org/git/newlib-cygwin.git
synced 2025-01-23 15:40:14 +08:00
048ebea981
Rename s_nearbyint.c, s_fdim.c and s_scalbln.c to remove conflicts Remove functions that are not needed from above files Modify include paths Add includes missing in cygwin build Add missing types Create Makefiles Create header files to resolve dependencies between directories Modify some instances of unsigned long to uint64_t for 32 bit platforms Add HAVE_FPMATH_H
280 lines
8.2 KiB
C
280 lines
8.2 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
|
*
|
|
* Copyright (c) 2009-2013 Steven G. Kargl
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice unmodified, this list of conditions, and the following
|
|
* disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* Optimized by Bruce D. Evans.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/**
|
|
* Compute the exponential of x for Intel 80-bit format. This is based on:
|
|
*
|
|
* PTP Tang, "Table-driven implementation of the exponential function
|
|
* in IEEE floating-point arithmetic," ACM Trans. Math. Soft., 15,
|
|
* 144-157 (1989).
|
|
*
|
|
* where the 32 table entries have been expanded to INTERVALS (see below).
|
|
*/
|
|
|
|
#include <float.h>
|
|
|
|
#ifdef __i386__
|
|
#include <ieeefp.h>
|
|
#endif
|
|
|
|
#include "../ld/fpmath.h"
|
|
#include "math.h"
|
|
#include "../ld/math_private.h"
|
|
#include "k_expl.h"
|
|
|
|
/* XXX Prevent compilers from erroneously constant folding these: */
|
|
static const volatile long double
|
|
huge = 0x1p10000L,
|
|
tiny = 0x1p-10000L;
|
|
|
|
static const long double
|
|
twom10000 = 0x1p-10000L;
|
|
|
|
static const union IEEEl2bits
|
|
/* log(2**16384 - 0.5) rounded towards zero: */
|
|
/* log(2**16384 - 0.5 + 1) rounded towards zero for expm1l() is the same: */
|
|
o_thresholdu = LD80C(0xb17217f7d1cf79ab, 13, 11356.5234062941439488L),
|
|
#define o_threshold (o_thresholdu.e)
|
|
/* log(2**(-16381-64-1)) rounded towards zero: */
|
|
u_thresholdu = LD80C(0xb21dfe7f09e2baa9, 13, -11399.4985314888605581L);
|
|
#define u_threshold (u_thresholdu.e)
|
|
|
|
long double
|
|
expl(long double x)
|
|
{
|
|
union IEEEl2bits u;
|
|
long double hi, lo, t, twopk;
|
|
int k;
|
|
uint16_t hx, ix;
|
|
|
|
DOPRINT_START(&x);
|
|
|
|
/* Filter out exceptional cases. */
|
|
u.e = x;
|
|
hx = u.xbits.expsign;
|
|
ix = hx & 0x7fff;
|
|
if (ix >= BIAS + 13) { /* |x| >= 8192 or x is NaN */
|
|
if (ix == BIAS + LDBL_MAX_EXP) {
|
|
if (hx & 0x8000) /* x is -Inf, -NaN or unsupported */
|
|
RETURNP(-1 / x);
|
|
RETURNP(x + x); /* x is +Inf, +NaN or unsupported */
|
|
}
|
|
if (x > o_threshold)
|
|
RETURNP(huge * huge);
|
|
if (x < u_threshold)
|
|
RETURNP(tiny * tiny);
|
|
} else if (ix < BIAS - 75) { /* |x| < 0x1p-75 (includes pseudos) */
|
|
RETURN2P(1, x); /* 1 with inexact iff x != 0 */
|
|
}
|
|
|
|
ENTERI();
|
|
|
|
twopk = 1;
|
|
__k_expl(x, &hi, &lo, &k);
|
|
t = SUM2P(hi, lo);
|
|
|
|
/* Scale by 2**k. */
|
|
if (k >= LDBL_MIN_EXP) {
|
|
if (k == LDBL_MAX_EXP)
|
|
RETURNI(t * 2 * 0x1p16383L);
|
|
SET_LDBL_EXPSIGN(twopk, BIAS + k);
|
|
RETURNI(t * twopk);
|
|
} else {
|
|
SET_LDBL_EXPSIGN(twopk, BIAS + k + 10000);
|
|
RETURNI(t * twopk * twom10000);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Compute expm1l(x) for Intel 80-bit format. This is based on:
|
|
*
|
|
* PTP Tang, "Table-driven implementation of the Expm1 function
|
|
* in IEEE floating-point arithmetic," ACM Trans. Math. Soft., 18,
|
|
* 211-222 (1992).
|
|
*/
|
|
|
|
/*
|
|
* Our T1 and T2 are chosen to be approximately the points where method
|
|
* A and method B have the same accuracy. Tang's T1 and T2 are the
|
|
* points where method A's accuracy changes by a full bit. For Tang,
|
|
* this drop in accuracy makes method A immediately less accurate than
|
|
* method B, but our larger INTERVALS makes method A 2 bits more
|
|
* accurate so it remains the most accurate method significantly
|
|
* closer to the origin despite losing the full bit in our extended
|
|
* range for it.
|
|
*/
|
|
static const double
|
|
T1 = -0.1659, /* ~-30.625/128 * log(2) */
|
|
T2 = 0.1659; /* ~30.625/128 * log(2) */
|
|
|
|
/*
|
|
* Domain [-0.1659, 0.1659], range ~[-2.6155e-22, 2.5507e-23]:
|
|
* |(exp(x)-1-x-x**2/2)/x - p(x)| < 2**-71.6
|
|
*
|
|
* XXX the coeffs aren't very carefully rounded, and I get 2.8 more bits,
|
|
* but unlike for ld128 we can't drop any terms.
|
|
*/
|
|
static const union IEEEl2bits
|
|
B3 = LD80C(0xaaaaaaaaaaaaaaab, -3, 1.66666666666666666671e-1L),
|
|
B4 = LD80C(0xaaaaaaaaaaaaaaac, -5, 4.16666666666666666712e-2L);
|
|
|
|
static const double
|
|
B5 = 8.3333333333333245e-3, /* 0x1.111111111110cp-7 */
|
|
B6 = 1.3888888888888861e-3, /* 0x1.6c16c16c16c0ap-10 */
|
|
B7 = 1.9841269841532042e-4, /* 0x1.a01a01a0319f9p-13 */
|
|
B8 = 2.4801587302069236e-5, /* 0x1.a01a01a03cbbcp-16 */
|
|
B9 = 2.7557316558468562e-6, /* 0x1.71de37fd33d67p-19 */
|
|
B10 = 2.7557315829785151e-7, /* 0x1.27e4f91418144p-22 */
|
|
B11 = 2.5063168199779829e-8, /* 0x1.ae94fabdc6b27p-26 */
|
|
B12 = 2.0887164654459567e-9; /* 0x1.1f122d6413fe1p-29 */
|
|
|
|
long double
|
|
expm1l(long double x)
|
|
{
|
|
union IEEEl2bits u, v;
|
|
long double fn, hx2_hi, hx2_lo, q, r, r1, r2, t, twomk, twopk, x_hi;
|
|
long double x_lo, x2, z;
|
|
long double x4;
|
|
int k, n, n2;
|
|
uint16_t hx, ix;
|
|
|
|
DOPRINT_START(&x);
|
|
|
|
/* Filter out exceptional cases. */
|
|
u.e = x;
|
|
hx = u.xbits.expsign;
|
|
ix = hx & 0x7fff;
|
|
if (ix >= BIAS + 6) { /* |x| >= 64 or x is NaN */
|
|
if (ix == BIAS + LDBL_MAX_EXP) {
|
|
if (hx & 0x8000) /* x is -Inf, -NaN or unsupported */
|
|
RETURNP(-1 / x - 1);
|
|
RETURNP(x + x); /* x is +Inf, +NaN or unsupported */
|
|
}
|
|
if (x > o_threshold)
|
|
RETURNP(huge * huge);
|
|
/*
|
|
* expm1l() never underflows, but it must avoid
|
|
* unrepresentable large negative exponents. We used a
|
|
* much smaller threshold for large |x| above than in
|
|
* expl() so as to handle not so large negative exponents
|
|
* in the same way as large ones here.
|
|
*/
|
|
if (hx & 0x8000) /* x <= -64 */
|
|
RETURN2P(tiny, -1); /* good for x < -65ln2 - eps */
|
|
}
|
|
|
|
ENTERI();
|
|
|
|
if (T1 < x && x < T2) {
|
|
if (ix < BIAS - 74) { /* |x| < 0x1p-74 (includes pseudos) */
|
|
/* x (rounded) with inexact if x != 0: */
|
|
RETURNPI(x == 0 ? x :
|
|
(0x1p100 * x + fabsl(x)) * 0x1p-100);
|
|
}
|
|
|
|
x2 = x * x;
|
|
x4 = x2 * x2;
|
|
q = x4 * (x2 * (x4 *
|
|
/*
|
|
* XXX the number of terms is no longer good for
|
|
* pairwise grouping of all except B3, and the
|
|
* grouping is no longer from highest down.
|
|
*/
|
|
(x2 * B12 + (x * B11 + B10)) +
|
|
(x2 * (x * B9 + B8) + (x * B7 + B6))) +
|
|
(x * B5 + B4.e)) + x2 * x * B3.e;
|
|
|
|
x_hi = (float)x;
|
|
x_lo = x - x_hi;
|
|
hx2_hi = x_hi * x_hi / 2;
|
|
hx2_lo = x_lo * (x + x_hi) / 2;
|
|
if (ix >= BIAS - 7)
|
|
RETURN2PI(hx2_hi + x_hi, hx2_lo + x_lo + q);
|
|
else
|
|
RETURN2PI(x, hx2_lo + q + hx2_hi);
|
|
}
|
|
|
|
/* Reduce x to (k*ln2 + endpoint[n2] + r1 + r2). */
|
|
fn = rnintl(x * INV_L);
|
|
n = irint(fn);
|
|
n2 = (unsigned)n % INTERVALS;
|
|
k = n >> LOG2_INTERVALS;
|
|
r1 = x - fn * L1;
|
|
r2 = fn * -L2;
|
|
r = r1 + r2;
|
|
|
|
/* Prepare scale factor. */
|
|
v.e = 1;
|
|
v.xbits.expsign = BIAS + k;
|
|
twopk = v.e;
|
|
|
|
/*
|
|
* Evaluate lower terms of
|
|
* expl(endpoint[n2] + r1 + r2) = tbl[n2] * expl(r1 + r2).
|
|
*/
|
|
z = r * r;
|
|
q = r2 + z * (A2 + r * A3) + z * z * (A4 + r * A5) + z * z * z * A6;
|
|
|
|
t = (long double)tbl[n2].lo + tbl[n2].hi;
|
|
|
|
if (k == 0) {
|
|
t = SUM2P(tbl[n2].hi - 1, tbl[n2].lo * (r1 + 1) + t * q +
|
|
tbl[n2].hi * r1);
|
|
RETURNI(t);
|
|
}
|
|
if (k == -1) {
|
|
t = SUM2P(tbl[n2].hi - 2, tbl[n2].lo * (r1 + 1) + t * q +
|
|
tbl[n2].hi * r1);
|
|
RETURNI(t / 2);
|
|
}
|
|
if (k < -7) {
|
|
t = SUM2P(tbl[n2].hi, tbl[n2].lo + t * (q + r1));
|
|
RETURNI(t * twopk - 1);
|
|
}
|
|
if (k > 2 * LDBL_MANT_DIG - 1) {
|
|
t = SUM2P(tbl[n2].hi, tbl[n2].lo + t * (q + r1));
|
|
if (k == LDBL_MAX_EXP)
|
|
RETURNI(t * 2 * 0x1p16383L - 1);
|
|
RETURNI(t * twopk - 1);
|
|
}
|
|
|
|
v.xbits.expsign = BIAS - k;
|
|
twomk = v.e;
|
|
|
|
if (k > LDBL_MANT_DIG - 1)
|
|
t = SUM2P(tbl[n2].hi, tbl[n2].lo - twomk + t * (q + r1));
|
|
else
|
|
t = SUM2P(tbl[n2].hi - twomk, tbl[n2].lo + t * (q + r1));
|
|
RETURNI(t * twopk);
|
|
}
|