mirror of
git://sourceware.org/git/newlib-cygwin.git
synced 2025-01-23 07:27:21 +08:00
048ebea981
Rename s_nearbyint.c, s_fdim.c and s_scalbln.c to remove conflicts Remove functions that are not needed from above files Modify include paths Add includes missing in cygwin build Add missing types Create Makefiles Create header files to resolve dependencies between directories Modify some instances of unsigned long to uint64_t for 32 bit platforms Add HAVE_FPMATH_H
663 lines
13 KiB
C
663 lines
13 KiB
C
/*-
|
|
* Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <math.h>
|
|
|
|
#include "../ld/math_private.h"
|
|
|
|
/*
|
|
* Polynomial evaluator:
|
|
* P[0] x^n + P[1] x^(n-1) + ... + P[n]
|
|
*/
|
|
static inline long double
|
|
__polevll(long double x, long double *PP, int n)
|
|
{
|
|
long double y;
|
|
long double *P;
|
|
|
|
P = PP;
|
|
y = *P++;
|
|
do {
|
|
y = y * x + *P++;
|
|
} while (--n);
|
|
|
|
return (y);
|
|
}
|
|
|
|
/*
|
|
* Polynomial evaluator:
|
|
* x^n + P[0] x^(n-1) + P[1] x^(n-2) + ... + P[n]
|
|
*/
|
|
static inline long double
|
|
__p1evll(long double x, long double *PP, int n)
|
|
{
|
|
long double y;
|
|
long double *P;
|
|
|
|
P = PP;
|
|
n -= 1;
|
|
y = x + *P++;
|
|
do {
|
|
y = y * x + *P++;
|
|
} while (--n);
|
|
|
|
return (y);
|
|
}
|
|
|
|
/* powl.c
|
|
*
|
|
* Power function, long double precision
|
|
*
|
|
*
|
|
*
|
|
* SYNOPSIS:
|
|
*
|
|
* long double x, y, z, powl();
|
|
*
|
|
* z = powl( x, y );
|
|
*
|
|
*
|
|
*
|
|
* DESCRIPTION:
|
|
*
|
|
* Computes x raised to the yth power. Analytically,
|
|
*
|
|
* x**y = exp( y log(x) ).
|
|
*
|
|
* Following Cody and Waite, this program uses a lookup table
|
|
* of 2**-i/32 and pseudo extended precision arithmetic to
|
|
* obtain several extra bits of accuracy in both the logarithm
|
|
* and the exponential.
|
|
*
|
|
*
|
|
*
|
|
* ACCURACY:
|
|
*
|
|
* The relative error of pow(x,y) can be estimated
|
|
* by y dl ln(2), where dl is the absolute error of
|
|
* the internally computed base 2 logarithm. At the ends
|
|
* of the approximation interval the logarithm equal 1/32
|
|
* and its relative error is about 1 lsb = 1.1e-19. Hence
|
|
* the predicted relative error in the result is 2.3e-21 y .
|
|
*
|
|
* Relative error:
|
|
* arithmetic domain # trials peak rms
|
|
*
|
|
* IEEE +-1000 40000 2.8e-18 3.7e-19
|
|
* .001 < x < 1000, with log(x) uniformly distributed.
|
|
* -1000 < y < 1000, y uniformly distributed.
|
|
*
|
|
* IEEE 0,8700 60000 6.5e-18 1.0e-18
|
|
* 0.99 < x < 1.01, 0 < y < 8700, uniformly distributed.
|
|
*
|
|
*
|
|
* ERROR MESSAGES:
|
|
*
|
|
* message condition value returned
|
|
* pow overflow x**y > MAXNUM INFINITY
|
|
* pow underflow x**y < 1/MAXNUM 0.0
|
|
* pow domain x<0 and y noninteger 0.0
|
|
*
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <float.h>
|
|
#include <math.h>
|
|
|
|
#include "../ld/math_private.h"
|
|
|
|
/* Table size */
|
|
#define NXT 32
|
|
/* log2(Table size) */
|
|
#define LNXT 5
|
|
|
|
/* log(1+x) = x - .5x^2 + x^3 * P(z)/Q(z)
|
|
* on the domain 2^(-1/32) - 1 <= x <= 2^(1/32) - 1
|
|
*/
|
|
static long double P[] = {
|
|
8.3319510773868690346226E-4L,
|
|
4.9000050881978028599627E-1L,
|
|
1.7500123722550302671919E0L,
|
|
1.4000100839971580279335E0L,
|
|
};
|
|
static long double Q[] = {
|
|
/* 1.0000000000000000000000E0L,*/
|
|
5.2500282295834889175431E0L,
|
|
8.4000598057587009834666E0L,
|
|
4.2000302519914740834728E0L,
|
|
};
|
|
/* A[i] = 2^(-i/32), rounded to IEEE long double precision.
|
|
* If i is even, A[i] + B[i/2] gives additional accuracy.
|
|
*/
|
|
static long double A[33] = {
|
|
1.0000000000000000000000E0L,
|
|
9.7857206208770013448287E-1L,
|
|
9.5760328069857364691013E-1L,
|
|
9.3708381705514995065011E-1L,
|
|
9.1700404320467123175367E-1L,
|
|
8.9735453750155359320742E-1L,
|
|
8.7812608018664974155474E-1L,
|
|
8.5930964906123895780165E-1L,
|
|
8.4089641525371454301892E-1L,
|
|
8.2287773907698242225554E-1L,
|
|
8.0524516597462715409607E-1L,
|
|
7.8799042255394324325455E-1L,
|
|
7.7110541270397041179298E-1L,
|
|
7.5458221379671136985669E-1L,
|
|
7.3841307296974965571198E-1L,
|
|
7.2259040348852331001267E-1L,
|
|
7.0710678118654752438189E-1L,
|
|
6.9195494098191597746178E-1L,
|
|
6.7712777346844636413344E-1L,
|
|
6.6261832157987064729696E-1L,
|
|
6.4841977732550483296079E-1L,
|
|
6.3452547859586661129850E-1L,
|
|
6.2092890603674202431705E-1L,
|
|
6.0762367999023443907803E-1L,
|
|
5.9460355750136053334378E-1L,
|
|
5.8186242938878875689693E-1L,
|
|
5.6939431737834582684856E-1L,
|
|
5.5719337129794626814472E-1L,
|
|
5.4525386633262882960438E-1L,
|
|
5.3357020033841180906486E-1L,
|
|
5.2213689121370692017331E-1L,
|
|
5.1094857432705833910408E-1L,
|
|
5.0000000000000000000000E-1L,
|
|
};
|
|
static long double B[17] = {
|
|
0.0000000000000000000000E0L,
|
|
2.6176170809902549338711E-20L,
|
|
-1.0126791927256478897086E-20L,
|
|
1.3438228172316276937655E-21L,
|
|
1.2207982955417546912101E-20L,
|
|
-6.3084814358060867200133E-21L,
|
|
1.3164426894366316434230E-20L,
|
|
-1.8527916071632873716786E-20L,
|
|
1.8950325588932570796551E-20L,
|
|
1.5564775779538780478155E-20L,
|
|
6.0859793637556860974380E-21L,
|
|
-2.0208749253662532228949E-20L,
|
|
1.4966292219224761844552E-20L,
|
|
3.3540909728056476875639E-21L,
|
|
-8.6987564101742849540743E-22L,
|
|
-1.2327176863327626135542E-20L,
|
|
0.0000000000000000000000E0L,
|
|
};
|
|
|
|
/* 2^x = 1 + x P(x),
|
|
* on the interval -1/32 <= x <= 0
|
|
*/
|
|
static long double R[] = {
|
|
1.5089970579127659901157E-5L,
|
|
1.5402715328927013076125E-4L,
|
|
1.3333556028915671091390E-3L,
|
|
9.6181291046036762031786E-3L,
|
|
5.5504108664798463044015E-2L,
|
|
2.4022650695910062854352E-1L,
|
|
6.9314718055994530931447E-1L,
|
|
};
|
|
|
|
#define douba(k) A[k]
|
|
#define doubb(k) B[k]
|
|
#define MEXP (NXT*16384.0L)
|
|
/* The following if denormal numbers are supported, else -MEXP: */
|
|
#define MNEXP (-NXT*(16384.0L+64.0L))
|
|
/* log2(e) - 1 */
|
|
#define LOG2EA 0.44269504088896340735992L
|
|
|
|
#define F W
|
|
#define Fa Wa
|
|
#define Fb Wb
|
|
#define G W
|
|
#define Ga Wa
|
|
#define Gb u
|
|
#define H W
|
|
#define Ha Wb
|
|
#define Hb Wb
|
|
|
|
static const long double MAXLOGL = 1.1356523406294143949492E4L;
|
|
static const long double MINLOGL = -1.13994985314888605586758E4L;
|
|
static const long double LOGE2L = 6.9314718055994530941723E-1L;
|
|
static volatile long double z;
|
|
static long double w, W, Wa, Wb, ya, yb, u;
|
|
static const long double huge = 0x1p10000L;
|
|
#if 0 /* XXX Prevent gcc from erroneously constant folding this. */
|
|
static const long double twom10000 = 0x1p-10000L;
|
|
#else
|
|
static volatile long double twom10000 = 0x1p-10000L;
|
|
#endif
|
|
|
|
static long double reducl( long double );
|
|
static long double powil ( long double, int );
|
|
|
|
long double
|
|
powl(long double x, long double y)
|
|
{
|
|
/* double F, Fa, Fb, G, Ga, Gb, H, Ha, Hb */
|
|
int i, nflg, iyflg, yoddint;
|
|
long e;
|
|
|
|
if( y == 0.0L )
|
|
return( 1.0L );
|
|
|
|
if( x == 1.0L )
|
|
return( 1.0L );
|
|
|
|
if( isnan(x) )
|
|
return ( nan_mix(x, y) );
|
|
if( isnan(y) )
|
|
return ( nan_mix(x, y) );
|
|
|
|
if( y == 1.0L )
|
|
return( x );
|
|
|
|
if( !isfinite(y) && x == -1.0L )
|
|
return( 1.0L );
|
|
|
|
if( y >= LDBL_MAX )
|
|
{
|
|
if( x > 1.0L )
|
|
return( INFINITY );
|
|
if( x > 0.0L && x < 1.0L )
|
|
return( 0.0L );
|
|
if( x < -1.0L )
|
|
return( INFINITY );
|
|
if( x > -1.0L && x < 0.0L )
|
|
return( 0.0L );
|
|
}
|
|
if( y <= -LDBL_MAX )
|
|
{
|
|
if( x > 1.0L )
|
|
return( 0.0L );
|
|
if( x > 0.0L && x < 1.0L )
|
|
return( INFINITY );
|
|
if( x < -1.0L )
|
|
return( 0.0L );
|
|
if( x > -1.0L && x < 0.0L )
|
|
return( INFINITY );
|
|
}
|
|
if( x >= LDBL_MAX )
|
|
{
|
|
if( y > 0.0L )
|
|
return( INFINITY );
|
|
return( 0.0L );
|
|
}
|
|
|
|
w = floorl(y);
|
|
/* Set iyflg to 1 if y is an integer. */
|
|
iyflg = 0;
|
|
if( w == y )
|
|
iyflg = 1;
|
|
|
|
/* Test for odd integer y. */
|
|
yoddint = 0;
|
|
if( iyflg )
|
|
{
|
|
ya = fabsl(y);
|
|
ya = floorl(0.5L * ya);
|
|
yb = 0.5L * fabsl(w);
|
|
if( ya != yb )
|
|
yoddint = 1;
|
|
}
|
|
|
|
if( x <= -LDBL_MAX )
|
|
{
|
|
if( y > 0.0L )
|
|
{
|
|
if( yoddint )
|
|
return( -INFINITY );
|
|
return( INFINITY );
|
|
}
|
|
if( y < 0.0L )
|
|
{
|
|
if( yoddint )
|
|
return( -0.0L );
|
|
return( 0.0 );
|
|
}
|
|
}
|
|
|
|
|
|
nflg = 0; /* flag = 1 if x<0 raised to integer power */
|
|
if( x <= 0.0L )
|
|
{
|
|
if( x == 0.0L )
|
|
{
|
|
if( y < 0.0 )
|
|
{
|
|
if( signbit(x) && yoddint )
|
|
return( -INFINITY );
|
|
return( INFINITY );
|
|
}
|
|
if( y > 0.0 )
|
|
{
|
|
if( signbit(x) && yoddint )
|
|
return( -0.0L );
|
|
return( 0.0 );
|
|
}
|
|
if( y == 0.0L )
|
|
return( 1.0L ); /* 0**0 */
|
|
else
|
|
return( 0.0L ); /* 0**y */
|
|
}
|
|
else
|
|
{
|
|
if( iyflg == 0 )
|
|
return (x - x) / (x - x); /* (x<0)**(non-int) is NaN */
|
|
nflg = 1;
|
|
}
|
|
}
|
|
|
|
/* Integer power of an integer. */
|
|
|
|
if( iyflg )
|
|
{
|
|
i = w;
|
|
w = floorl(x);
|
|
if( (w == x) && (fabsl(y) < 32768.0) )
|
|
{
|
|
w = powil( x, (int) y );
|
|
return( w );
|
|
}
|
|
}
|
|
|
|
|
|
if( nflg )
|
|
x = fabsl(x);
|
|
|
|
/* separate significand from exponent */
|
|
x = frexpl( x, &i );
|
|
e = i;
|
|
|
|
/* find significand in antilog table A[] */
|
|
i = 1;
|
|
if( x <= douba(17) )
|
|
i = 17;
|
|
if( x <= douba(i+8) )
|
|
i += 8;
|
|
if( x <= douba(i+4) )
|
|
i += 4;
|
|
if( x <= douba(i+2) )
|
|
i += 2;
|
|
if( x >= douba(1) )
|
|
i = -1;
|
|
i += 1;
|
|
|
|
|
|
/* Find (x - A[i])/A[i]
|
|
* in order to compute log(x/A[i]):
|
|
*
|
|
* log(x) = log( a x/a ) = log(a) + log(x/a)
|
|
*
|
|
* log(x/a) = log(1+v), v = x/a - 1 = (x-a)/a
|
|
*/
|
|
x -= douba(i);
|
|
x -= doubb(i/2);
|
|
x /= douba(i);
|
|
|
|
|
|
/* rational approximation for log(1+v):
|
|
*
|
|
* log(1+v) = v - v**2/2 + v**3 P(v) / Q(v)
|
|
*/
|
|
z = x*x;
|
|
w = x * ( z * __polevll( x, P, 3 ) / __p1evll( x, Q, 3 ) );
|
|
w = w - ldexpl( z, -1 ); /* w - 0.5 * z */
|
|
|
|
/* Convert to base 2 logarithm:
|
|
* multiply by log2(e) = 1 + LOG2EA
|
|
*/
|
|
z = LOG2EA * w;
|
|
z += w;
|
|
z += LOG2EA * x;
|
|
z += x;
|
|
|
|
/* Compute exponent term of the base 2 logarithm. */
|
|
w = -i;
|
|
w = ldexpl( w, -LNXT ); /* divide by NXT */
|
|
w += e;
|
|
/* Now base 2 log of x is w + z. */
|
|
|
|
/* Multiply base 2 log by y, in extended precision. */
|
|
|
|
/* separate y into large part ya
|
|
* and small part yb less than 1/NXT
|
|
*/
|
|
ya = reducl(y);
|
|
yb = y - ya;
|
|
|
|
/* (w+z)(ya+yb)
|
|
* = w*ya + w*yb + z*y
|
|
*/
|
|
F = z * y + w * yb;
|
|
Fa = reducl(F);
|
|
Fb = F - Fa;
|
|
|
|
G = Fa + w * ya;
|
|
Ga = reducl(G);
|
|
Gb = G - Ga;
|
|
|
|
H = Fb + Gb;
|
|
Ha = reducl(H);
|
|
w = ldexpl( Ga+Ha, LNXT );
|
|
|
|
/* Test the power of 2 for overflow */
|
|
if( w > MEXP )
|
|
return (huge * huge); /* overflow */
|
|
|
|
if( w < MNEXP )
|
|
return (twom10000 * twom10000); /* underflow */
|
|
|
|
e = w;
|
|
Hb = H - Ha;
|
|
|
|
if( Hb > 0.0L )
|
|
{
|
|
e += 1;
|
|
Hb -= (1.0L/NXT); /*0.0625L;*/
|
|
}
|
|
|
|
/* Now the product y * log2(x) = Hb + e/NXT.
|
|
*
|
|
* Compute base 2 exponential of Hb,
|
|
* where -0.0625 <= Hb <= 0.
|
|
*/
|
|
z = Hb * __polevll( Hb, R, 6 ); /* z = 2**Hb - 1 */
|
|
|
|
/* Express e/NXT as an integer plus a negative number of (1/NXT)ths.
|
|
* Find lookup table entry for the fractional power of 2.
|
|
*/
|
|
if( e < 0 )
|
|
i = 0;
|
|
else
|
|
i = 1;
|
|
i = e/NXT + i;
|
|
e = NXT*i - e;
|
|
w = douba( e );
|
|
z = w * z; /* 2**-e * ( 1 + (2**Hb-1) ) */
|
|
z = z + w;
|
|
z = ldexpl( z, i ); /* multiply by integer power of 2 */
|
|
|
|
if( nflg )
|
|
{
|
|
/* For negative x,
|
|
* find out if the integer exponent
|
|
* is odd or even.
|
|
*/
|
|
w = ldexpl( y, -1 );
|
|
w = floorl(w);
|
|
w = ldexpl( w, 1 );
|
|
if( w != y )
|
|
z = -z; /* odd exponent */
|
|
}
|
|
|
|
return( z );
|
|
}
|
|
|
|
|
|
/* Find a multiple of 1/NXT that is within 1/NXT of x. */
|
|
static inline long double
|
|
reducl(long double x)
|
|
{
|
|
long double t;
|
|
|
|
t = ldexpl( x, LNXT );
|
|
t = floorl( t );
|
|
t = ldexpl( t, -LNXT );
|
|
return(t);
|
|
}
|
|
|
|
/* powil.c
|
|
*
|
|
* Real raised to integer power, long double precision
|
|
*
|
|
*
|
|
*
|
|
* SYNOPSIS:
|
|
*
|
|
* long double x, y, powil();
|
|
* int n;
|
|
*
|
|
* y = powil( x, n );
|
|
*
|
|
*
|
|
*
|
|
* DESCRIPTION:
|
|
*
|
|
* Returns argument x raised to the nth power.
|
|
* The routine efficiently decomposes n as a sum of powers of
|
|
* two. The desired power is a product of two-to-the-kth
|
|
* powers of x. Thus to compute the 32767 power of x requires
|
|
* 28 multiplications instead of 32767 multiplications.
|
|
*
|
|
*
|
|
*
|
|
* ACCURACY:
|
|
*
|
|
*
|
|
* Relative error:
|
|
* arithmetic x domain n domain # trials peak rms
|
|
* IEEE .001,1000 -1022,1023 50000 4.3e-17 7.8e-18
|
|
* IEEE 1,2 -1022,1023 20000 3.9e-17 7.6e-18
|
|
* IEEE .99,1.01 0,8700 10000 3.6e-16 7.2e-17
|
|
*
|
|
* Returns MAXNUM on overflow, zero on underflow.
|
|
*
|
|
*/
|
|
|
|
static long double
|
|
powil(long double x, int nn)
|
|
{
|
|
long double ww, y;
|
|
long double s;
|
|
int n, e, sign, asign, lx;
|
|
|
|
if( x == 0.0L )
|
|
{
|
|
if( nn == 0 )
|
|
return( 1.0L );
|
|
else if( nn < 0 )
|
|
return( LDBL_MAX );
|
|
else
|
|
return( 0.0L );
|
|
}
|
|
|
|
if( nn == 0 )
|
|
return( 1.0L );
|
|
|
|
|
|
if( x < 0.0L )
|
|
{
|
|
asign = -1;
|
|
x = -x;
|
|
}
|
|
else
|
|
asign = 0;
|
|
|
|
|
|
if( nn < 0 )
|
|
{
|
|
sign = -1;
|
|
n = -nn;
|
|
}
|
|
else
|
|
{
|
|
sign = 1;
|
|
n = nn;
|
|
}
|
|
|
|
/* Overflow detection */
|
|
|
|
/* Calculate approximate logarithm of answer */
|
|
s = x;
|
|
s = frexpl( s, &lx );
|
|
e = (lx - 1)*n;
|
|
if( (e == 0) || (e > 64) || (e < -64) )
|
|
{
|
|
s = (s - 7.0710678118654752e-1L) / (s + 7.0710678118654752e-1L);
|
|
s = (2.9142135623730950L * s - 0.5L + lx) * nn * LOGE2L;
|
|
}
|
|
else
|
|
{
|
|
s = LOGE2L * e;
|
|
}
|
|
|
|
if( s > MAXLOGL )
|
|
return (huge * huge); /* overflow */
|
|
|
|
if( s < MINLOGL )
|
|
return (twom10000 * twom10000); /* underflow */
|
|
/* Handle tiny denormal answer, but with less accuracy
|
|
* since roundoff error in 1.0/x will be amplified.
|
|
* The precise demarcation should be the gradual underflow threshold.
|
|
*/
|
|
if( s < (-MAXLOGL+2.0L) )
|
|
{
|
|
x = 1.0L/x;
|
|
sign = -sign;
|
|
}
|
|
|
|
/* First bit of the power */
|
|
if( n & 1 )
|
|
y = x;
|
|
|
|
else
|
|
{
|
|
y = 1.0L;
|
|
asign = 0;
|
|
}
|
|
|
|
ww = x;
|
|
n >>= 1;
|
|
while( n )
|
|
{
|
|
ww = ww * ww; /* arg to the 2-to-the-kth power */
|
|
if( n & 1 ) /* if that bit is set, then include in product */
|
|
y *= ww;
|
|
n >>= 1;
|
|
}
|
|
|
|
if( asign )
|
|
y = -y; /* odd power of negative number */
|
|
if( sign < 0 )
|
|
y = 1.0L/y;
|
|
return(y);
|
|
}
|