101 lines
3.3 KiB
C
101 lines
3.3 KiB
C
/* Single-precision log function.
|
|
Copyright (c) 2017 Arm Ltd. All rights reserved.
|
|
|
|
SPDX-License-Identifier: BSD-3-Clause
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
1. Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
3. The name of the company may not be used to endorse or promote
|
|
products derived from this software without specific prior written
|
|
permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
|
|
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
|
|
|
|
#include "fdlibm.h"
|
|
#if !__OBSOLETE_MATH
|
|
|
|
#include <math.h>
|
|
#include <stdint.h>
|
|
#include "math_config.h"
|
|
|
|
/*
|
|
LOGF_TABLE_BITS = 4
|
|
LOGF_POLY_ORDER = 4
|
|
|
|
ULP error: 0.818 (nearest rounding.)
|
|
Relative error: 1.957 * 2^-26 (before rounding.)
|
|
*/
|
|
|
|
#define T __logf_data.tab
|
|
#define A __logf_data.poly
|
|
#define Ln2 __logf_data.ln2
|
|
#define N (1 << LOGF_TABLE_BITS)
|
|
#define OFF 0x3f330000
|
|
|
|
float
|
|
logf (float x)
|
|
{
|
|
/* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
|
|
double_t z, r, r2, y, y0, invc, logc;
|
|
uint32_t ix, iz, tmp;
|
|
int k, i;
|
|
|
|
ix = asuint (x);
|
|
#if WANT_ROUNDING
|
|
/* Fix sign of zero with downward rounding when x==1. */
|
|
if (__builtin_expect (ix == 0x3f800000, 0))
|
|
return 0;
|
|
#endif
|
|
if (__builtin_expect (ix - 0x00800000 >= 0x7f800000 - 0x00800000, 0))
|
|
{
|
|
/* x < 0x1p-126 or inf or nan. */
|
|
if (ix * 2 == 0)
|
|
return __math_divzerof (1);
|
|
if (ix == 0x7f800000) /* log(inf) == inf. */
|
|
return x;
|
|
if ((ix & 0x80000000) || ix * 2 >= 0xff000000)
|
|
return __math_invalidf (x);
|
|
/* x is subnormal, normalize it. */
|
|
ix = asuint (x * 0x1p23f);
|
|
ix -= 23 << 23;
|
|
}
|
|
|
|
/* x = 2^k z; where z is in range [OFF,2*OFF] and exact.
|
|
The range is split into N subintervals.
|
|
The ith subinterval contains z and c is near its center. */
|
|
tmp = ix - OFF;
|
|
i = (tmp >> (23 - LOGF_TABLE_BITS)) % N;
|
|
k = (int32_t) tmp >> 23; /* arithmetic shift */
|
|
iz = ix - (tmp & 0x1ff << 23);
|
|
invc = T[i].invc;
|
|
logc = T[i].logc;
|
|
z = (double_t) asfloat (iz);
|
|
|
|
/* log(x) = log1p(z/c-1) + log(c) + k*Ln2 */
|
|
r = z * invc - 1;
|
|
y0 = logc + (double_t) k * Ln2;
|
|
|
|
/* Pipelined polynomial evaluation to approximate log1p(r). */
|
|
r2 = r * r;
|
|
y = A[1] * r + A[2];
|
|
y = A[0] * r2 + y;
|
|
y = y * r2 + (y0 + r);
|
|
return (float) y;
|
|
}
|
|
#endif /* !__OBSOLETE_MATH */
|