4
0
mirror of git://sourceware.org/git/newlib-cygwin.git synced 2025-01-15 11:00:04 +08:00
Fabian Schriever a8a40ee575 Fix error in exp in magnitude [2e-32,2e-28]
While testing the exp function we noticed some errors at the specified
magnitude. Within this range the exp function returns the input value +1
as an output. We chose to run a test of 1m exponentially spaced values
in the ranges [-2^-27,-2^-32] and [2^-32,2^-27] which showed 7603 and
3912 results with an error of >=0.5 ULP (compared with MPFR in 128 bit)
with the highest being 0.56 ULP and 0.53 ULP.

It's easy to fix by changing the magnitude at which the input value +1
is returned from <2^-28 to <2^-32 and using the polynomial instead. This
reduces the number of results with an error of >=0.5 ULP to 485 and 479
in above tests, all of which are exactly 0.5 ULP.

As we were already checking on exp we also took a look at expf. For expf
the magnitude where the input value +1 is returned can be increased from
<2^-28 to <2^-23 without accuracy loss for a slight performance
improvement. To ensure this was the correct value we tested all values
in the ranges [-2^-17,-2^-28] and [2^-28,2^-17] (~92.3m values each).
2020-03-09 10:12:25 +01:00

102 lines
2.8 KiB
C

/* ef_exp.c -- float version of e_exp.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include "fdlibm.h"
#if __OBSOLETE_MATH
#ifdef __v810__
#define const
#endif
#ifdef __STDC__
static const float
#else
static float
#endif
one = 1.0,
halF[2] = {0.5,-0.5,},
huge = 1.0e+30,
twom100 = 7.8886090522e-31, /* 2**-100=0x0d800000 */
ln2HI[2] ={ 6.9313812256e-01, /* 0x3f317180 */
-6.9313812256e-01,}, /* 0xbf317180 */
ln2LO[2] ={ 9.0580006145e-06, /* 0x3717f7d1 */
-9.0580006145e-06,}, /* 0xb717f7d1 */
invln2 = 1.4426950216e+00, /* 0x3fb8aa3b */
P1 = 1.6666667163e-01, /* 0x3e2aaaab */
P2 = -2.7777778450e-03, /* 0xbb360b61 */
P3 = 6.6137559770e-05, /* 0x388ab355 */
P4 = -1.6533901999e-06, /* 0xb5ddea0e */
P5 = 4.1381369442e-08; /* 0x3331bb4c */
#ifdef __STDC__
float __ieee754_expf(float x) /* default IEEE double exp */
#else
float __ieee754_expf(x) /* default IEEE double exp */
float x;
#endif
{
float y,hi,lo,c,t;
__int32_t k = 0,xsb,sx;
__uint32_t hx;
GET_FLOAT_WORD(sx,x);
xsb = (sx>>31)&1; /* sign bit of x */
hx = sx & 0x7fffffff; /* high word of |x| */
/* filter out non-finite argument */
if(FLT_UWORD_IS_NAN(hx))
return x+x; /* NaN */
if(FLT_UWORD_IS_INFINITE(hx))
return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */
if(sx > FLT_UWORD_LOG_MAX)
return huge*huge; /* overflow */
if(sx < 0 && hx > FLT_UWORD_LOG_MIN)
return twom100*twom100; /* underflow */
/* argument reduction */
if(hx > 0x3eb17218) { /* if |x| > 0.5 ln2 */
if(hx < 0x3F851592) { /* and |x| < 1.5 ln2 */
hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
} else {
k = invln2*x+halF[xsb];
t = k;
hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */
lo = t*ln2LO[0];
}
x = hi - lo;
}
else if(hx < 0x34000000) { /* when |x|<2**-23 */
if(huge+x>one) return one+x;/* trigger inexact */
}
/* x is now in primary range */
t = x*x;
c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
if(k==0) return one-((x*c)/(c-(float)2.0)-x);
else y = one-((lo-(x*c)/((float)2.0-c))-hi);
if(k >= -125) {
__uint32_t hy;
GET_FLOAT_WORD(hy,y);
SET_FLOAT_WORD(y,hy+(k<<23)); /* add k to y's exponent */
return y;
} else {
__uint32_t hy;
GET_FLOAT_WORD(hy,y);
SET_FLOAT_WORD(y,hy+((k+100)<<23)); /* add k to y's exponent */
return y*twom100;
}
}
#endif /* __OBSOLETE_MATH */