mirror of
git://sourceware.org/git/newlib-cygwin.git
synced 2025-01-15 19:09:58 +08:00
315 lines
8.8 KiB
C
315 lines
8.8 KiB
C
/*
|
|
* cma101.c -- lo-level support for Cogent CMA101 development board.
|
|
*
|
|
* Copyright (c) 1996, 2001, 2002 Cygnus Support
|
|
*
|
|
* The authors hereby grant permission to use, copy, modify, distribute,
|
|
* and license this software and its documentation for any purpose, provided
|
|
* that existing copyright notices are retained in all copies and that this
|
|
* notice is included verbatim in any distributions. No written agreement,
|
|
* license, or royalty fee is required for any of the authorized uses.
|
|
* Modifications to this software may be copyrighted by their authors
|
|
* and need not follow the licensing terms described here, provided that
|
|
* the new terms are clearly indicated on the first page of each file where
|
|
* they apply.
|
|
*/
|
|
|
|
#ifdef __mips16
|
|
/* The assembler portions of this file need to be re-written to
|
|
support mips16, if and when that seems useful.
|
|
*/
|
|
#error cma101.c can not be compiled -mips16
|
|
#endif
|
|
|
|
|
|
#include <time.h> /* standard ANSI time routines */
|
|
|
|
/* Normally these would appear in a header file for external
|
|
use. However, we are only building a simple example world at the
|
|
moment: */
|
|
|
|
#include "regs.S"
|
|
|
|
#if defined(MIPSEB)
|
|
#define BYTEREG(b,o) ((volatile unsigned char *)(PHYS_TO_K1((b) + (o) + 7)))
|
|
#endif /* MIPSEB */
|
|
#if defined(MIPSEL)
|
|
#define BYTEREG(b,o) ((volatile unsigned char *)(PHYS_TO_K1((b) + (o))))
|
|
#endif /* MIPSEL */
|
|
|
|
/* I/O addresses: */
|
|
#define RTCLOCK_BASE (0x0E800000) /* Mk48T02 NVRAM/RTC */
|
|
#define UART_BASE (0x0E900000) /* NS16C552 DUART */
|
|
#define LCD_BASE (0x0EB00000) /* Alphanumeric display */
|
|
|
|
/* LCD panel manifests: */
|
|
#define LCD_DATA BYTEREG(LCD_BASE,0)
|
|
#define LCD_CMD BYTEREG(LCD_BASE,8)
|
|
|
|
#define LCD_STAT_BUSY (0x80)
|
|
#define LCD_SET_DDADDR (0x80)
|
|
|
|
/* RTC manifests */
|
|
/* The lo-offsets are the NVRAM locations (0x7F8 bytes) */
|
|
#define RTC_CONTROL BYTEREG(RTCLOCK_BASE,0x3FC0)
|
|
#define RTC_SECS BYTEREG(RTCLOCK_BASE,0x3FC8)
|
|
#define RTC_MINS BYTEREG(RTCLOCK_BASE,0x3FD0)
|
|
#define RTC_HOURS BYTEREG(RTCLOCK_BASE,0x3FD8)
|
|
#define RTC_DAY BYTEREG(RTCLOCK_BASE,0x3FE0)
|
|
#define RTC_DATE BYTEREG(RTCLOCK_BASE,0x3FE8)
|
|
#define RTC_MONTH BYTEREG(RTCLOCK_BASE,0x3FF0)
|
|
#define RTC_YEAR BYTEREG(RTCLOCK_BASE,0x3FF8)
|
|
|
|
#define RTC_CTL_LOCK_READ (0x40) /* lock RTC whilst reading */
|
|
#define RTC_CTL_LOCK_WRITE (0x80) /* lock RTC whilst writing */
|
|
|
|
/* Macro to force out-standing memory transfers to complete before
|
|
next sequence. For the moment we assume that the processor in the
|
|
CMA101 board supports at least ISA II. */
|
|
#define DOSYNC() asm(" .set mips2 ; sync ; .set mips0")
|
|
|
|
/* We disable interrupts by writing zero to all of the masks, and the
|
|
global interrupt enable bit: */
|
|
#define INTDISABLE(sr,tmp) asm("\
|
|
.set mips2 ; \
|
|
mfc0 %0,$12 ; \
|
|
lui %1,0xffff ; \
|
|
ori %1,%1,0xfffe ; \
|
|
and %1, %0, %1 ; \
|
|
mtc0 %1,$12 ; \
|
|
.set mips0" : "=d" (sr), "=d" (tmp))
|
|
#define INTRESTORE(sr) asm("\
|
|
.set mips2 ; \
|
|
mtc0 %0,$12 ; \
|
|
.set mips0" : : "d" (sr))
|
|
|
|
/* TODO:FIXME: The CPU card support should be in separate source file
|
|
from the standard CMA101 support provided in this file. */
|
|
|
|
/* The CMA101 board being used contains a CMA257 Vr4300 CPU:
|
|
MasterClock is at 33MHz. PClock is derived from MasterClock by
|
|
multiplying by the ratio defined by the DivMode pins:
|
|
DivMode(1:0) MasterClock PClock Ratio
|
|
00 100MHz 100MHz 1:1
|
|
01 100MHz 150MHz 1.5:1
|
|
10 100MHz 200MHz 2:1
|
|
11 100Mhz 300MHz 3:1
|
|
|
|
Are these pins reflected in the EC bits in the CONFIG register? or
|
|
is that talking about a different clock multiplier?
|
|
110 = 1
|
|
111 = 1.5
|
|
000 = 2
|
|
001 = 3
|
|
(all other values are undefined)
|
|
*/
|
|
|
|
#define MASTERCLOCK (33) /* ticks per uS */
|
|
unsigned int pclock; /* number of PClock ticks per uS */
|
|
void
|
|
set_pclock (void)
|
|
{
|
|
unsigned int config;
|
|
asm volatile ("mfc0 %0,$16 ; nop ; nop" : "=r" (config)); /* nasty CP0 register constant */
|
|
switch ((config >> 28) & 0x7) {
|
|
case 0x7 : /* 1.5:1 */
|
|
pclock = (MASTERCLOCK + (MASTERCLOCK / 2));
|
|
break;
|
|
|
|
case 0x0 : /* 2:1 */
|
|
pclock = (2 * MASTERCLOCK);
|
|
break;
|
|
|
|
case 0x1 : /* 3:1 */
|
|
pclock = (3 * MASTERCLOCK);
|
|
break;
|
|
|
|
case 0x6 : /* 1:1 */
|
|
default : /* invalid configuration, so assume the lowest */
|
|
pclock = MASTERCLOCK;
|
|
break;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
#define PCLOCK_WAIT(x) __cpu_timer_poll((x) * pclock)
|
|
|
|
/* NOTE: On the Cogent CMA101 board the LCD controller will sometimes
|
|
return not-busy, even though it is. The work-around is to perform a
|
|
~50uS delay before checking the busy signal. */
|
|
|
|
static int
|
|
lcd_busy (void)
|
|
{
|
|
PCLOCK_WAIT(50); /* 50uS delay */
|
|
return(*LCD_CMD & LCD_STAT_BUSY);
|
|
}
|
|
|
|
/* Note: This code *ASSUMES* that the LCD has already been initialised
|
|
by the monitor. It only provides code to write to the LCD, and is
|
|
not a complete device driver. */
|
|
|
|
void
|
|
lcd_display (int line, const char *msg)
|
|
{
|
|
int n;
|
|
|
|
if (lcd_busy ())
|
|
return;
|
|
|
|
*LCD_CMD = (LCD_SET_DDADDR | (line == 1 ? 0x40 : 0x00));
|
|
|
|
for (n = 0; n < 16; n++) {
|
|
if (lcd_busy ())
|
|
return;
|
|
if (*msg)
|
|
*LCD_DATA = *msg++;
|
|
else
|
|
*LCD_DATA = ' ';
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
#define SM_PATTERN (0x55AA55AA)
|
|
#define SM_INCR ((256 << 10) / sizeof(unsigned int)) /* 64K words */
|
|
|
|
extern unsigned int __buserr_count(void);
|
|
extern void __default_buserr_handler(void);
|
|
extern void __restore_buserr_handler(void);
|
|
|
|
/* Allow the user to provide his/her own defaults. */
|
|
unsigned int __sizemem_default;
|
|
|
|
unsigned int
|
|
__sizemem ()
|
|
{
|
|
volatile unsigned int *base;
|
|
volatile unsigned int *probe;
|
|
unsigned int baseorig;
|
|
unsigned int sr;
|
|
extern void *end;
|
|
char *endptr = (char *)&end;
|
|
int extra;
|
|
|
|
/* If the linker script provided a value for the memory size (or the user
|
|
overrode it in a debugger), use that. */
|
|
if (__sizemem_default)
|
|
return __sizemem_default;
|
|
|
|
/* If we are running in kernel segment 0 (possibly cached), try sizing memory
|
|
in kernel segment 1 (uncached) to avoid some problems with monitors. */
|
|
if (endptr >= K0BASE_ADDR && endptr < K1BASE_ADDR)
|
|
endptr = (endptr - K0BASE_ADDR) + K1BASE_ADDR;
|
|
|
|
INTDISABLE(sr,baseorig); /* disable all interrupt masks */
|
|
|
|
__default_buserr_handler();
|
|
__cpu_flush();
|
|
|
|
DOSYNC();
|
|
|
|
/* _end is the end of the user program. _end may not be properly aligned
|
|
for an int pointer, so we adjust the address to make sure it is safe.
|
|
We use void * arithmetic to avoid accidentally truncating the pointer. */
|
|
|
|
extra = ((int) endptr & (sizeof (int) - 1));
|
|
base = ((void *) endptr + sizeof (int) - extra);
|
|
baseorig = *base;
|
|
|
|
*base = SM_PATTERN;
|
|
/* This assumes that the instructions fetched between the store, and
|
|
the following read will have changed the data bus contents: */
|
|
if (*base == SM_PATTERN) {
|
|
probe = base;
|
|
for (;;) {
|
|
unsigned int probeorig;
|
|
probe += SM_INCR;
|
|
probeorig = *probe;
|
|
/* Check if a bus error occurred: */
|
|
if (!__buserr_count()) {
|
|
*probe = SM_PATTERN;
|
|
DOSYNC();
|
|
if (*probe == SM_PATTERN) {
|
|
*probe = ~SM_PATTERN;
|
|
DOSYNC();
|
|
if (*probe == ~SM_PATTERN) {
|
|
if (*base == SM_PATTERN) {
|
|
*probe = probeorig;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
*probe = probeorig;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
*base = baseorig;
|
|
__restore_buserr_handler();
|
|
__cpu_flush();
|
|
|
|
DOSYNC();
|
|
|
|
INTRESTORE(sr); /* restore interrupt mask to entry state */
|
|
|
|
return((probe - base) * sizeof(unsigned int));
|
|
}
|
|
|
|
/* Provided as a function, so as to avoid reading the I/O location
|
|
multiple times: */
|
|
static int
|
|
convertbcd(byte)
|
|
unsigned char byte;
|
|
{
|
|
return ((((byte >> 4) & 0xF) * 10) + (byte & 0xF));
|
|
}
|
|
|
|
time_t
|
|
time (_timer)
|
|
time_t *_timer;
|
|
{
|
|
time_t result = 0;
|
|
struct tm tm;
|
|
*RTC_CONTROL |= RTC_CTL_LOCK_READ;
|
|
DOSYNC();
|
|
|
|
tm.tm_sec = convertbcd(*RTC_SECS);
|
|
tm.tm_min = convertbcd(*RTC_MINS);
|
|
tm.tm_hour = convertbcd(*RTC_HOURS);
|
|
tm.tm_mday = convertbcd(*RTC_DATE);
|
|
tm.tm_mon = convertbcd(*RTC_MONTH);
|
|
tm.tm_year = convertbcd(*RTC_YEAR);
|
|
|
|
DOSYNC();
|
|
*RTC_CONTROL &= ~(RTC_CTL_LOCK_READ | RTC_CTL_LOCK_WRITE);
|
|
|
|
tm.tm_isdst = 0;
|
|
|
|
/* Check for invalid time information */
|
|
if ((tm.tm_sec < 60) && (tm.tm_min < 60) && (tm.tm_hour < 24)
|
|
&& (tm.tm_mday < 32) && (tm.tm_mon < 13)) {
|
|
|
|
/* Get the correct year number, but keep it in YEAR-1900 form: */
|
|
if (tm.tm_year < 70)
|
|
tm.tm_year += 100;
|
|
|
|
#if 0 /* NOTE: mon_printf() can only accept 4 arguments (format string + 3 fields) */
|
|
mon_printf("[DBG: s=%d m=%d h=%d]", tm.tm_sec, tm.tm_min, tm.tm_hour);
|
|
mon_printf("[DBG: d=%d m=%d y=%d]", tm.tm_mday, tm.tm_mon, tm.tm_year);
|
|
#endif
|
|
|
|
/* Convert the time-structure into a second count */
|
|
result = mktime (&tm);
|
|
}
|
|
|
|
if (_timer != NULL)
|
|
*_timer = result;
|
|
|
|
return (result);
|
|
}
|
|
|
|
/*> EOF cma101.c <*/
|