newlib-cygwin/winsup/cygwin/fhandler_proc.cc

1177 lines
32 KiB
C++

/* fhandler_proc.cc: fhandler for /proc virtual filesystem
Copyright 2002, 2003, 2004, 2005, 2006, 2007 Red Hat, Inc.
This file is part of Cygwin.
This software is a copyrighted work licensed under the terms of the
Cygwin license. Please consult the file "CYGWIN_LICENSE" for
details. */
#include "winsup.h"
#include <unistd.h>
#include <stdlib.h>
#include <sys/cygwin.h>
#include <ntdef.h>
#include "cygerrno.h"
#include "security.h"
#include "path.h"
#include "fhandler.h"
#include "pinfo.h"
#include "dtable.h"
#include "cygheap.h"
#include <assert.h>
#include <sys/utsname.h>
#include <sys/param.h>
#include "ntdll.h"
#include <ctype.h>
#include <winioctl.h>
#include <wchar.h>
#include "cpuid.h"
#define _COMPILING_NEWLIB
#include <dirent.h>
/* offsets in proc_listing */
static const int PROC_LOADAVG = 2; // /proc/loadavg
static const int PROC_MEMINFO = 3; // /proc/meminfo
static const int PROC_REGISTRY = 4; // /proc/registry
static const int PROC_STAT = 5; // /proc/stat
static const int PROC_VERSION = 6; // /proc/version
static const int PROC_UPTIME = 7; // /proc/uptime
static const int PROC_CPUINFO = 8; // /proc/cpuinfo
static const int PROC_PARTITIONS = 9; // /proc/partitions
static const int PROC_SELF = 10; // /proc/self
static const int PROC_REGISTRY32 = 11; // /proc/registry32
static const int PROC_REGISTRY64 = 12; // /proc/registry64
static const int PROC_NET = 13; // /proc/net
/* names of objects in /proc */
static const char *proc_listing[] = {
".",
"..",
"loadavg",
"meminfo",
"registry",
"stat",
"version",
"uptime",
"cpuinfo",
"partitions",
"self",
"registry32",
"registry64",
"net",
NULL
};
#define PROC_DIR_COUNT 4
static const int PROC_LINK_COUNT = (sizeof (proc_listing) / sizeof (const char *)) - 1;
/* FH_PROC in the table below means the file/directory is handles by
* fhandler_proc.
*/
static const DWORD proc_fhandlers[PROC_LINK_COUNT] = {
FH_PROC,
FH_PROC,
FH_PROC,
FH_PROC,
FH_REGISTRY,
FH_PROC,
FH_PROC,
FH_PROC,
FH_PROC,
FH_PROC,
FH_PROC,
FH_REGISTRY,
FH_REGISTRY,
FH_PROCNET,
};
/* name of the /proc filesystem */
const char proc[] = "/proc";
const int proc_len = sizeof (proc) - 1;
static _off64_t format_proc_meminfo (char *destbuf, size_t maxsize);
static _off64_t format_proc_stat (char *destbuf, size_t maxsize);
static _off64_t format_proc_uptime (char *destbuf, size_t maxsize);
static _off64_t format_proc_cpuinfo (char *destbuf, size_t maxsize);
static _off64_t format_proc_partitions (char *destbuf, size_t maxsize);
/* Auxillary function that returns the fhandler associated with the given path
this is where it would be nice to have pattern matching in C - polymorphism
just doesn't cut it. */
DWORD
fhandler_proc::get_proc_fhandler (const char *path)
{
debug_printf ("get_proc_fhandler(%s)", path);
path += proc_len;
/* Since this method is called from path_conv::check we can't rely on
it being normalised and therefore the path may have runs of slashes
in it. */
while (isdirsep (*path))
path++;
/* Check if this is the root of the virtual filesystem (i.e. /proc). */
if (*path == 0)
return FH_PROC;
for (int i = 0; proc_listing[i]; i++)
{
if (path_prefix_p (proc_listing[i], path, strlen (proc_listing[i])))
return proc_fhandlers[i];
}
if (pinfo (atoi (path)))
return FH_PROCESS;
bool has_subdir = false;
while (*path)
if (isdirsep (*path++))
{
has_subdir = true;
break;
}
if (has_subdir)
/* The user is trying to access a non-existent subdirectory of /proc. */
return FH_BAD;
else
/* Return FH_PROC so that we can return EROFS if the user is trying to
create a file. */
return FH_PROC;
}
/* Returns 0 if path doesn't exist, >0 if path is a directory,
-1 if path is a file, -2 if it's a symlink. */
int
fhandler_proc::exists ()
{
const char *path = get_name ();
debug_printf ("exists (%s)", path);
path += proc_len;
if (*path == 0)
return 2;
for (int i = 0; proc_listing[i]; i++)
if (pathmatch (path + 1, proc_listing[i]))
{
fileid = i;
return (proc_fhandlers[i] == FH_PROC) ? (i == PROC_SELF ? -2 : -1) : 1;
}
return 0;
}
fhandler_proc::fhandler_proc ():
fhandler_virtual ()
{
}
int
fhandler_proc::fstat (struct __stat64 *buf)
{
const char *path = get_name ();
debug_printf ("fstat (%s)", path);
path += proc_len;
fhandler_base::fstat (buf);
buf->st_mode &= ~_IFMT & NO_W;
if (!*path)
{
winpids pids ((DWORD) 0);
buf->st_ino = 2;
buf->st_mode |= S_IFDIR | S_IXUSR | S_IXGRP | S_IXOTH;
buf->st_nlink = PROC_DIR_COUNT + 2 + pids.npids;
return 0;
}
else
{
path++;
for (int i = 0; proc_listing[i]; i++)
if (pathmatch (path, proc_listing[i]))
{
if (proc_fhandlers[i] != FH_PROC)
buf->st_mode |= S_IFDIR | S_IXUSR | S_IXGRP | S_IXOTH;
else if (i == PROC_SELF)
buf->st_mode = S_IFLNK | S_IRWXU | S_IRWXG | S_IRWXO;
else
{
buf->st_mode &= NO_X;
buf->st_mode |= S_IFREG;
}
return 0;
}
}
set_errno (ENOENT);
return -1;
}
int
fhandler_proc::readdir (DIR *dir, dirent *de)
{
int res;
if (dir->__d_position < PROC_LINK_COUNT)
{
strcpy (de->d_name, proc_listing[dir->__d_position++]);
dir->__flags |= dirent_saw_dot | dirent_saw_dot_dot;
res = 0;
}
else
{
winpids pids ((DWORD) 0);
int found = 0;
res = ENMFILE;
for (unsigned i = 0; i < pids.npids; i++)
if (found++ == dir->__d_position - PROC_LINK_COUNT)
{
__small_sprintf (de->d_name, "%d", pids[i]->pid);
dir->__d_position++;
res = 0;
break;
}
}
syscall_printf ("%d = readdir (%p, %p) (%s)", res, dir, de, de->d_name);
return res;
}
int
fhandler_proc::open (int flags, mode_t mode)
{
int proc_file_no = -1;
int res = fhandler_virtual::open (flags, mode);
if (!res)
goto out;
nohandle (true);
const char *path;
path = get_name () + proc_len;
if (!*path)
{
if ((flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
{
set_errno (EEXIST);
res = 0;
goto out;
}
else if (flags & O_WRONLY)
{
set_errno (EISDIR);
res = 0;
goto out;
}
else
{
flags |= O_DIROPEN;
goto success;
}
}
proc_file_no = -1;
for (int i = 0; proc_listing[i]; i++)
if (path_prefix_p (proc_listing[i], path + 1, strlen (proc_listing[i])))
{
proc_file_no = i;
if (proc_fhandlers[i] != FH_PROC)
{
if ((flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
{
set_errno (EEXIST);
res = 0;
goto out;
}
else if (flags & O_WRONLY)
{
set_errno (EISDIR);
res = 0;
goto out;
}
else
{
flags |= O_DIROPEN;
goto success;
}
}
}
if (proc_file_no == -1)
{
if (flags & O_CREAT)
{
set_errno (EROFS);
res = 0;
goto out;
}
else
{
set_errno (ENOENT);
res = 0;
goto out;
}
}
if (flags & O_WRONLY)
{
set_errno (EROFS);
res = 0;
goto out;
}
fileid = proc_file_no;
if (!fill_filebuf ())
{
res = 0;
goto out;
}
if (flags & O_APPEND)
position = filesize;
else
position = 0;
success:
res = 1;
set_flags ((flags & ~O_TEXT) | O_BINARY);
set_open_status ();
out:
syscall_printf ("%d = fhandler_proc::open (%p, %d)", res, flags, mode);
return res;
}
bool
fhandler_proc::fill_filebuf ()
{
switch (fileid)
{
case PROC_VERSION:
{
if (!filebuf)
{
struct utsname uts_name;
uname (&uts_name);
bufalloc = strlen (uts_name.sysname) + 1
+ strlen (uts_name.release) + 1
+ strlen (uts_name.version) + 2;
filebuf = (char *) crealloc_abort (filebuf, bufalloc);
filesize = __small_sprintf (filebuf, "%s %s %s\n",
uts_name.sysname, uts_name.release,
uts_name.version);
}
break;
}
case PROC_UPTIME:
{
filebuf = (char *) crealloc_abort (filebuf, bufalloc = 80);
filesize = format_proc_uptime (filebuf, bufalloc);
break;
}
case PROC_STAT:
{
filebuf = (char *) crealloc_abort (filebuf, bufalloc = 16384);
filesize = format_proc_stat (filebuf, bufalloc);
break;
}
case PROC_LOADAVG:
{
/*
* not really supported - Windows doesn't keep track of these values
* Windows 95/98/me does have the KERNEL/CPUUsage performance counter
* which is similar.
*/
filebuf = (char *) crealloc_abort (filebuf, bufalloc = 16);
filesize = __small_sprintf (filebuf, "%u.%02u %u.%02u %u.%02u\n",
0, 0, 0, 0, 0, 0);
break;
}
case PROC_MEMINFO:
{
filebuf = (char *) crealloc_abort (filebuf, bufalloc = 2048);
filesize = format_proc_meminfo (filebuf, bufalloc);
break;
}
case PROC_CPUINFO:
{
filebuf = (char *) crealloc_abort (filebuf, bufalloc = 16384);
filesize = format_proc_cpuinfo (filebuf, bufalloc);
break;
}
case PROC_PARTITIONS:
{
filebuf = (char *) crealloc_abort (filebuf, bufalloc = 4096);
filesize = format_proc_partitions (filebuf, bufalloc);
break;
}
case PROC_SELF:
{
filebuf = (char *) crealloc_abort (filebuf, bufalloc = 32);
filesize = __small_sprintf (filebuf, "%d", getpid ());
}
}
return true;
}
static _off64_t
format_proc_meminfo (char *destbuf, size_t maxsize)
{
unsigned long mem_total = 0UL, mem_free = 0UL, swap_total = 0UL,
swap_free = 0UL;
MEMORYSTATUS memory_status;
GlobalMemoryStatus (&memory_status);
mem_total = memory_status.dwTotalPhys;
mem_free = memory_status.dwAvailPhys;
PSYSTEM_PAGEFILE_INFORMATION spi = NULL;
ULONG size = 512;
NTSTATUS ret = STATUS_SUCCESS;
spi = (PSYSTEM_PAGEFILE_INFORMATION) malloc (size);
if (spi)
{
ret = NtQuerySystemInformation (SystemPagefileInformation, (PVOID) spi,
size, &size);
if (ret == STATUS_INFO_LENGTH_MISMATCH)
{
free (spi);
spi = (PSYSTEM_PAGEFILE_INFORMATION) malloc (size);
if (spi)
ret = NtQuerySystemInformation (SystemPagefileInformation,
(PVOID) spi, size, &size);
}
}
if (!spi || ret || (!ret && GetLastError () == ERROR_PROC_NOT_FOUND))
{
swap_total = memory_status.dwTotalPageFile - mem_total;
swap_free = memory_status.dwAvailPageFile - mem_total;
}
else
{
PSYSTEM_PAGEFILE_INFORMATION spp = spi;
do
{
swap_total += spp->CurrentSize * getsystempagesize ();
swap_free += (spp->CurrentSize - spp->TotalUsed)
* getsystempagesize ();
}
while (spp->NextEntryOffset
&& (spp = (PSYSTEM_PAGEFILE_INFORMATION)
((char *) spp + spp->NextEntryOffset)));
}
if (spi)
free (spi);
return __small_sprintf (destbuf, " total: used: free:\n"
"Mem: %10lu %10lu %10lu\n"
"Swap: %10lu %10lu %10lu\n"
"MemTotal: %10lu kB\n"
"MemFree: %10lu kB\n"
"MemShared: 0 kB\n"
"HighTotal: 0 kB\n"
"HighFree: 0 kB\n"
"LowTotal: %10lu kB\n"
"LowFree: %10lu kB\n"
"SwapTotal: %10lu kB\n"
"SwapFree: %10lu kB\n",
mem_total, mem_total - mem_free, mem_free,
swap_total, swap_total - swap_free, swap_free,
mem_total >> 10, mem_free >> 10,
mem_total >> 10, mem_free >> 10,
swap_total >> 10, swap_free >> 10);
}
static _off64_t
format_proc_uptime (char *destbuf, size_t maxsize)
{
unsigned long long uptime = 0ULL, idle_time = 0ULL;
NTSTATUS ret;
SYSTEM_BASIC_INFORMATION sbi;
SYSTEM_TIME_OF_DAY_INFORMATION stodi;
SYSTEM_PERFORMANCE_INFORMATION spi;
ret = NtQuerySystemInformation (SystemBasicInformation, (PVOID) &sbi,
sizeof sbi, NULL);
if (!NT_SUCCESS (ret))
{
debug_printf ("NtQuerySystemInformation: ret %d", ret);
sbi.NumberProcessors = 1;
}
ret = NtQuerySystemInformation (SystemTimeOfDayInformation, &stodi,
sizeof stodi, NULL);
if (NT_SUCCESS (ret))
uptime = (stodi.CurrentTime.QuadPart - stodi.BootTime.QuadPart) / 100000ULL;
ret = NtQuerySystemInformation (SystemPerformanceInformation, &spi,
sizeof spi, NULL);
if (NT_SUCCESS (ret))
idle_time = (spi.IdleTime.QuadPart / sbi.NumberProcessors) / 100000ULL;
return __small_sprintf (destbuf, "%U.%02u %U.%02u\n",
uptime / 100, long (uptime % 100),
idle_time / 100, long (idle_time % 100));
}
static _off64_t
format_proc_stat (char *destbuf, size_t maxsize)
{
unsigned long pages_in = 0UL, pages_out = 0UL, interrupt_count = 0UL,
context_switches = 0UL, swap_in = 0UL, swap_out = 0UL;
time_t boot_time = 0;
char *eobuf = destbuf;
NTSTATUS ret;
SYSTEM_PERFORMANCE_INFORMATION spi;
SYSTEM_TIME_OF_DAY_INFORMATION stodi;
SYSTEM_BASIC_INFORMATION sbi;
if ((ret = NtQuerySystemInformation (SystemBasicInformation,
(PVOID) &sbi, sizeof sbi, NULL))
!= STATUS_SUCCESS)
{
debug_printf ("NtQuerySystemInformation: ret %d", ret);
sbi.NumberProcessors = 1;
}
SYSTEM_PROCESSOR_TIMES spt[sbi.NumberProcessors];
ret = NtQuerySystemInformation (SystemProcessorTimes, (PVOID) spt,
sizeof spt[0] * sbi.NumberProcessors, NULL);
interrupt_count = 0;
if (ret == STATUS_SUCCESS)
{
unsigned long long user_time = 0ULL, kernel_time = 0ULL, idle_time = 0ULL;
for (int i = 0; i < sbi.NumberProcessors; i++)
{
kernel_time += (spt[i].KernelTime.QuadPart - spt[i].IdleTime.QuadPart)
* HZ / 10000000ULL;
user_time += spt[i].UserTime.QuadPart * HZ / 10000000ULL;
idle_time += spt[i].IdleTime.QuadPart * HZ / 10000000ULL;
}
eobuf += __small_sprintf (eobuf, "cpu %U %U %U %U\n",
user_time, 0ULL, kernel_time, idle_time);
user_time = 0ULL, kernel_time = 0ULL, idle_time = 0ULL;
for (int i = 0; i < sbi.NumberProcessors; i++)
{
interrupt_count += spt[i].InterruptCount;
kernel_time = (spt[i].KernelTime.QuadPart - spt[i].IdleTime.QuadPart) * HZ / 10000000ULL;
user_time = spt[i].UserTime.QuadPart * HZ / 10000000ULL;
idle_time = spt[i].IdleTime.QuadPart * HZ / 10000000ULL;
eobuf += __small_sprintf (eobuf, "cpu%d %U %U %U %U\n", i,
user_time, 0ULL, kernel_time, idle_time);
}
ret = NtQuerySystemInformation (SystemPerformanceInformation,
(PVOID) &spi, sizeof spi, NULL);
}
if (ret == STATUS_SUCCESS)
ret = NtQuerySystemInformation (SystemTimeOfDayInformation,
(PVOID) &stodi,
sizeof stodi, NULL);
if (ret != STATUS_SUCCESS)
{
debug_printf ("NtQuerySystemInformation: ret %d", ret);
return 0;
}
pages_in = spi.PagesRead;
pages_out = spi.PagefilePagesWritten + spi.MappedFilePagesWritten;
/*
* Note: there is no distinction made in this structure between pages
* read from the page file and pages read from mapped files, but there
* is such a distinction made when it comes to writing. Goodness knows
* why. The value of swap_in, then, will obviously be wrong but its our
* best guess.
*/
swap_in = spi.PagesRead;
swap_out = spi.PagefilePagesWritten;
context_switches = spi.ContextSwitches;
boot_time = to_time_t ((FILETIME *) &stodi.BootTime.QuadPart);
eobuf += __small_sprintf (eobuf, "page %u %u\n"
"swap %u %u\n"
"intr %u\n"
"ctxt %u\n"
"btime %u\n",
pages_in, pages_out,
swap_in, swap_out,
interrupt_count,
context_switches,
boot_time);
return eobuf - destbuf;
}
#define read_value(x,y) \
do {\
dwCount = BUFSIZE; \
if ((dwError = RegQueryValueEx (hKey, x, NULL, &dwType, (BYTE *) szBuffer, &dwCount)), \
(dwError != ERROR_SUCCESS && dwError != ERROR_MORE_DATA)) \
{ \
debug_printf ("RegQueryValueEx failed retcode %d", dwError); \
return 0; \
} \
if (dwType != y) \
{ \
debug_printf ("Value %s had an unexpected type (expected %d, found %d)", y, dwType); \
return 0; \
}\
} while (0)
#define print(x) \
do { \
strcpy (bufptr, x), \
bufptr += sizeof (x) - 1; \
} while (0)
static _off64_t
format_proc_cpuinfo (char *destbuf, size_t maxsize)
{
SYSTEM_INFO siSystemInfo;
HKEY hKey;
DWORD dwError, dwCount, dwType;
DWORD dwOldThreadAffinityMask;
int cpu_number;
const int BUFSIZE = 256;
CHAR szBuffer[BUFSIZE];
char *bufptr = destbuf;
GetSystemInfo (&siSystemInfo);
for (cpu_number = 0; ; cpu_number++)
{
if (cpu_number)
print ("\n");
__small_sprintf (szBuffer, "HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\%d", cpu_number);
if ((dwError = RegOpenKeyEx (HKEY_LOCAL_MACHINE, szBuffer, 0, KEY_QUERY_VALUE, &hKey)) != ERROR_SUCCESS)
{
if (dwError == ERROR_FILE_NOT_FOUND)
break;
debug_printf ("RegOpenKeyEx failed retcode %d", dwError);
return 0;
}
dwOldThreadAffinityMask = SetThreadAffinityMask (GetCurrentThread (), 1 << cpu_number);
if (dwOldThreadAffinityMask == 0)
debug_printf ("SetThreadAffinityMask failed %E");
// I'm not sure whether the thread changes processor immediately
// and I'm not sure whether this function will cause the thread to be rescheduled
low_priority_sleep (0);
bool has_cpuid = false;
if (!can_set_flag (0x00040000))
debug_printf ("386 processor - no cpuid");
else
{
debug_printf ("486 processor");
if (can_set_flag (0x00200000))
{
debug_printf ("processor supports CPUID instruction");
has_cpuid = true;
}
else
debug_printf ("processor does not support CPUID instruction");
}
if (!has_cpuid)
{
bufptr += __small_sprintf (bufptr, "processor : %d\n", cpu_number);
read_value ("VendorIdentifier", REG_SZ);
bufptr += __small_sprintf (bufptr, "vendor_id : %s\n", szBuffer);
read_value ("Identifier", REG_SZ);
bufptr += __small_sprintf (bufptr, "identifier : %s\n", szBuffer);
read_value ("~Mhz", REG_DWORD);
bufptr += __small_sprintf (bufptr, "cpu MHz : %u\n", *(DWORD *) szBuffer);
print ("flags :");
if (IsProcessorFeaturePresent (PF_3DNOW_INSTRUCTIONS_AVAILABLE))
print (" 3dnow");
if (IsProcessorFeaturePresent (PF_COMPARE_EXCHANGE_DOUBLE))
print (" cx8");
if (!IsProcessorFeaturePresent (PF_FLOATING_POINT_EMULATED))
print (" fpu");
if (IsProcessorFeaturePresent (PF_MMX_INSTRUCTIONS_AVAILABLE))
print (" mmx");
if (IsProcessorFeaturePresent (PF_PAE_ENABLED))
print (" pae");
if (IsProcessorFeaturePresent (PF_RDTSC_INSTRUCTION_AVAILABLE))
print (" tsc");
if (IsProcessorFeaturePresent (PF_XMMI_INSTRUCTIONS_AVAILABLE))
print (" sse");
if (IsProcessorFeaturePresent (PF_XMMI64_INSTRUCTIONS_AVAILABLE))
print (" sse2");
}
else
{
bufptr += __small_sprintf (bufptr, "processor\t: %d\n", cpu_number);
unsigned maxf, vendor_id[4], unused;
cpuid (&maxf, &vendor_id[0], &vendor_id[2], &vendor_id[1], 0);
maxf &= 0xffff;
vendor_id[3] = 0;
// vendor identification
bool is_amd = false, is_intel = false;
if (!strcmp ((char*)vendor_id, "AuthenticAMD"))
is_amd = true;
else if (!strcmp ((char*)vendor_id, "GenuineIntel"))
is_intel = true;
bufptr += __small_sprintf (bufptr, "vendor_id\t: %s\n",
(char *)vendor_id);
read_value ("~Mhz", REG_DWORD);
unsigned cpu_mhz = *(DWORD *)szBuffer;
if (maxf >= 1)
{
unsigned features2, features1, extra_info, cpuid_sig;
cpuid (&cpuid_sig, &extra_info, &features2, &features1, 1);
/* unsigned extended_family = (cpuid_sig & 0x0ff00000) >> 20,
extended_model = (cpuid_sig & 0x000f0000) >> 16,
type = (cpuid_sig & 0x00003000) >> 12; */
unsigned family = (cpuid_sig & 0x00000f00) >> 8,
model = (cpuid_sig & 0x000000f0) >> 4,
stepping = cpuid_sig & 0x0000000f;
/* Not printed on Linux */
//unsigned brand_id = extra_info & 0x0000000f;
//unsigned cpu_count = (extra_info & 0x00ff0000) >> 16;
unsigned apic_id = (extra_info & 0xff000000) >> 24;
if (family == 15)
family += (cpuid_sig >> 20) & 0xff;
if (family >= 6)
model += ((cpuid_sig >> 16) & 0x0f) << 4;
unsigned maxe = 0;
cpuid (&maxe, &unused, &unused, &unused, 0x80000000);
if (maxe >= 0x80000004)
{
unsigned *model_name = (unsigned *) szBuffer;
cpuid (&model_name[0], &model_name[1], &model_name[2],
&model_name[3], 0x80000002);
cpuid (&model_name[4], &model_name[5], &model_name[6],
&model_name[7], 0x80000003);
cpuid (&model_name[8], &model_name[9], &model_name[10],
&model_name[11], 0x80000004);
model_name[12] = 0;
}
else
{
// could implement a lookup table here if someone needs it
strcpy (szBuffer, "unknown");
}
int cache_size = -1,
tlb_size = -1,
clflush = 64,
cache_alignment = 64;
if (features1 & (1 << 19)) // CLFSH
clflush = ((extra_info >> 8) & 0xff) << 3;
if (is_intel && family == 15)
cache_alignment = clflush * 2;
if (maxe >= 0x80000005) // L1 Cache and TLB Identifiers
{
unsigned data_cache, inst_cache;
cpuid (&unused, &unused, &data_cache, &inst_cache,
0x80000005);
cache_size = (inst_cache >> 24) + (data_cache >> 24);
tlb_size = 0;
}
if (maxe >= 0x80000006) // L2 Cache and L2 TLB Identifiers
{
unsigned tlb, l2;
cpuid (&unused, &tlb, &l2, &unused, 0x80000006);
cache_size = l2 >> 16;
tlb_size = ((tlb >> 16) & 0xfff) + (tlb & 0xfff);
}
bufptr += __small_sprintf (bufptr, "cpu family\t: %d\n"
"model\t\t: %d\n"
"model name\t: %s\n"
"stepping\t: %d\n"
"cpu MHz\t\t: %d\n",
family,
model,
szBuffer + strspn (szBuffer, " "),
stepping,
cpu_mhz);
if (cache_size >= 0)
bufptr += __small_sprintf (bufptr, "cache size\t: %d KB\n",
cache_size);
// Recognize multi-core CPUs
if (is_amd && maxe >= 0x80000008)
{
unsigned core_info;
cpuid (&unused, &unused, &core_info, &unused, 0x80000008);
int max_cores = 1 + (core_info & 0xff);
if (max_cores > 1)
{
int shift = (core_info >> 12) & 0x0f;
if (!shift)
while ((1 << shift) < max_cores)
++shift;
int core_id = apic_id & ((1 << shift) - 1);
apic_id >>= shift;
bufptr += __small_sprintf (bufptr, "physical id\t: %d\n"
"core id\t\t: %d\n"
"cpu cores\t: %d\n",
apic_id, core_id, max_cores);
}
}
// Recognize Intel Hyper-Transport CPUs
else if (is_intel && (features1 & (1 << 28)) && maxf >= 4)
{
/* TODO */
}
bufptr += __small_sprintf (bufptr, "fpu\t\t: %s\n"
"fpu_exception\t: %s\n"
"cpuid level\t: %d\n"
"wp\t\t: yes\n",
(features1 & (1 << 0)) ? "yes" : "no",
(features1 & (1 << 0)) ? "yes" : "no",
maxf);
print ("flags\t\t:");
if (features1 & (1 << 0))
print (" fpu");
if (features1 & (1 << 1))
print (" vme");
if (features1 & (1 << 2))
print (" de");
if (features1 & (1 << 3))
print (" pse");
if (features1 & (1 << 4))
print (" tsc");
if (features1 & (1 << 5))
print (" msr");
if (features1 & (1 << 6))
print (" pae");
if (features1 & (1 << 7))
print (" mce");
if (features1 & (1 << 8))
print (" cx8");
if (features1 & (1 << 9))
print (" apic");
if (features1 & (1 << 11))
print (" sep");
if (features1 & (1 << 12))
print (" mtrr");
if (features1 & (1 << 13))
print (" pge");
if (features1 & (1 << 14))
print (" mca");
if (features1 & (1 << 15))
print (" cmov");
if (features1 & (1 << 16))
print (" pat");
if (features1 & (1 << 17))
print (" pse36");
if (features1 & (1 << 18))
print (" pn");
if (features1 & (1 << 19))
print (" clflush");
if (is_intel && features1 & (1 << 21))
print (" dts");
if (is_intel && features1 & (1 << 22))
print (" acpi");
if (features1 & (1 << 23))
print (" mmx");
if (features1 & (1 << 24))
print (" fxsr");
if (features1 & (1 << 25))
print (" sse");
if (features1 & (1 << 26))
print (" sse2");
if (is_intel && (features1 & (1 << 27)))
print (" ss");
if (features1 & (1 << 28))
print (" ht");
if (is_intel)
{
if (features1 & (1 << 29))
print (" tm");
if (features1 & (1 << 30))
print (" ia64");
if (features1 & (1 << 31))
print (" pbe");
}
if (is_amd && maxe >= 0x80000001)
{
unsigned features;
cpuid (&unused, &unused, &unused, &features, 0x80000001);
if (features & (1 << 11))
print (" syscall");
if (features & (1 << 19)) // Huh? Not in AMD64 specs.
print (" mp");
if (features & (1 << 20))
print (" nx");
if (features & (1 << 22))
print (" mmxext");
if (features & (1 << 25))
print (" fxsr_opt");
if (features & (1 << 27))
print (" rdtscp");
if (features & (1 << 29))
print (" lm");
if (features & (1 << 30)) // 31th bit is on
print (" 3dnowext");
if (features & (1 << 31)) // 32th bit (highest) is on
print (" 3dnow");
}
if (features2 & (1 << 0))
print (" pni");
if (is_intel)
{
if (features2 & (1 << 3))
print (" monitor");
if (features2 & (1 << 4))
print (" ds_cpl");
if (features2 & (1 << 7))
print (" tm2");
if (features2 & (1 << 8))
print (" est");
if (features2 & (1 << 10))
print (" cid");
}
if (features2 & (1 << 13))
print (" cx16");
if (is_amd && maxe >= 0x80000001)
{
unsigned features;
cpuid (&unused, &unused, &features, &unused, 0x80000001);
if (features & (1 << 0))
print (" lahf_lm");
if (features & (1 << 1))
print (" cmp_legacy");
if (features & (1 << 2))
print (" svm");
if (features & (1 << 4))
print (" cr8_legacy");
}
print ("\n");
/* TODO: bogomips */
if (tlb_size >= 0)
bufptr += __small_sprintf (bufptr,
"TLB size\t: %d 4K pages\n",
tlb_size);
bufptr += __small_sprintf (bufptr, "clflush size\t: %d\n"
"cache_alignment\t: %d\n",
clflush,
cache_alignment);
if (maxe >= 0x80000008) // Address size
{
unsigned addr_size, phys, virt;
cpuid (&addr_size, &unused, &unused, &unused, 0x80000008);
phys = addr_size & 0xff;
virt = (addr_size >> 8) & 0xff;
/* Fix an errata on Intel CPUs */
if (is_intel && family == 15 && model == 3 && stepping == 4)
phys = 36;
bufptr += __small_sprintf (bufptr, "address sizes\t: "
"%u bits physical, "
"%u bits virtual\n",
phys, virt);
}
if (maxe >= 0x80000007) // advanced power management
{
cpuid (&unused, &unused, &unused, &features2, 0x80000007);
print ("power management:");
if (features2 & (1 << 0))
print (" ts");
if (features2 & (1 << 1))
print (" fid");
if (features2 & (1 << 2))
print (" vid");
if (features2 & (1 << 3))
print (" ttp");
if (features2 & (1 << 4))
print (" tm");
if (features2 & (1 << 5))
print (" stc");
}
}
else
{
bufptr += __small_sprintf (bufptr, "cpu MHz : %d\n"
"fpu : %s\n",
cpu_mhz,
IsProcessorFeaturePresent (PF_FLOATING_POINT_EMULATED) ? "no" : "yes");
}
}
if (dwOldThreadAffinityMask != 0)
SetThreadAffinityMask (GetCurrentThread (), dwOldThreadAffinityMask);
RegCloseKey (hKey);
bufptr += __small_sprintf (bufptr, "\n");
}
return bufptr - destbuf;
}
#undef read_value
static _off64_t
format_proc_partitions (char *destbuf, size_t maxsize)
{
char *bufptr = destbuf;
print ("major minor #blocks name\n\n");
char devname[CYG_MAX_PATH];
OBJECT_ATTRIBUTES attr;
HANDLE dirhdl, devhdl;
IO_STATUS_BLOCK io;
NTSTATUS status;
/* Open \Device object directory. */
wchar_t wpath[CYG_MAX_PATH] = L"\\Device";
UNICODE_STRING upath = {14, 16, wpath};
InitializeObjectAttributes (&attr, &upath, OBJ_CASE_INSENSITIVE, NULL, NULL);
status = NtOpenDirectoryObject (&dirhdl, DIRECTORY_QUERY, &attr);
if (!NT_SUCCESS (status))
{
debug_printf ("NtOpenDirectoryObject %x", status);
return bufptr - destbuf;
}
/* Traverse \Device directory ... */
PDIRECTORY_BASIC_INFORMATION dbi = (PDIRECTORY_BASIC_INFORMATION)
alloca (640);
BOOLEAN restart = TRUE;
ULONG context = 0;
while (NT_SUCCESS (NtQueryDirectoryObject (dirhdl, dbi, 640, TRUE, restart,
&context, NULL)))
{
restart = FALSE;
sys_wcstombs (devname, CYG_MAX_PATH - 1, dbi->ObjectName.Buffer,
dbi->ObjectName.Length / 2);
/* ... and check for a "Harddisk[0-9]*" entry. */
if (!strncasematch (devname, "Harddisk", 8)
|| dbi->ObjectName.Length < 18
|| !isdigit (devname[8]))
continue;
/* Construct path name for partition 0, which is the whole disk,
and try to open. */
wcscpy (wpath, dbi->ObjectName.Buffer);
wcscpy (wpath + dbi->ObjectName.Length / 2, L"\\Partition0");
upath.Length = 22 + dbi->ObjectName.Length;
upath.MaximumLength = upath.Length + 2;
InitializeObjectAttributes (&attr, &upath, OBJ_CASE_INSENSITIVE,
dirhdl, NULL);
status = NtOpenFile (&devhdl, READ_CONTROL | FILE_READ_DATA, &attr, &io,
FILE_SHARE_VALID_FLAGS, 0);
if (!NT_SUCCESS (status))
{
/* Retry with READ_CONTROL only for non-privileged users. This
at least prints the Partition0 info, but it doesn't allow access
to the drive's layout information. It beats me, though, why
a non-privileged user shouldn't get read access to the drive
layout information. */
status = NtOpenFile (&devhdl, READ_CONTROL, &attr, &io,
FILE_SHARE_VALID_FLAGS, 0);
if (!NT_SUCCESS (status))
{
debug_printf ("NtOpenFile(%s) %x", devname, status);
continue;
}
}
/* Use a buffer since some ioctl buffers aren't fixed size. */
char buf[256];
PARTITION_INFORMATION *pi = NULL;
PARTITION_INFORMATION_EX *pix = NULL;
DISK_GEOMETRY *dg = NULL;
DWORD bytes;
unsigned long drive_number = strtoul (devname + 8, NULL, 10);
unsigned long long size;
if (wincap.has_disk_ex_ioctls ()
&& DeviceIoControl (devhdl, IOCTL_DISK_GET_PARTITION_INFO_EX,
NULL, 0, buf, 256, &bytes, NULL))
{
pix = (PARTITION_INFORMATION_EX *) buf;
size = pix->PartitionLength.QuadPart;
}
else if (DeviceIoControl (devhdl, IOCTL_DISK_GET_PARTITION_INFO,
NULL, 0, buf, 256, &bytes, NULL))
{
pi = (PARTITION_INFORMATION *) buf;
size = pi->PartitionLength.QuadPart;
}
else if (DeviceIoControl (devhdl, IOCTL_DISK_GET_DRIVE_GEOMETRY,
NULL, 0, buf, 256, &bytes, NULL))
{
dg = (DISK_GEOMETRY *) buf;
size = (unsigned long long) dg->Cylinders.QuadPart
* dg->TracksPerCylinder
* dg->SectorsPerTrack
* dg->BytesPerSector;
}
else
size = 0;
if (!pi && !pix && !dg)
debug_printf ("DeviceIoControl %E");
else
{
device dev;
dev.parsedisk (drive_number, 0);
bufptr += __small_sprintf (bufptr, "%5d %5d %9U %s\n",
dev.major, dev.minor,
size >> 10, dev.name + 5);
}
size_t buf_size = 8192;
while (true)
{
char buf[buf_size];
if (DeviceIoControl (devhdl, IOCTL_DISK_GET_DRIVE_LAYOUT,
NULL, 0, (DRIVE_LAYOUT_INFORMATION *) buf,
buf_size, &bytes, NULL))
/* fall through */;
else if (GetLastError () == ERROR_INSUFFICIENT_BUFFER)
{
buf_size *= 2;
continue;
}
else
{
debug_printf ("DeviceIoControl %E");
break;
}
DRIVE_LAYOUT_INFORMATION *dli = (DRIVE_LAYOUT_INFORMATION *) buf;
for (unsigned part = 0; part < dli->PartitionCount; part++)
{
if (!dli->PartitionEntry[part].PartitionLength.QuadPart
|| !dli->PartitionEntry[part].RecognizedPartition)
continue;
device dev;
dev.parsedisk (drive_number,
dli->PartitionEntry[part].PartitionNumber);
size = dli->PartitionEntry[part].PartitionLength.QuadPart >> 10;
bufptr += __small_sprintf (bufptr, "%5d %5d %9U %s\n",
dev.major, dev.minor,
size, dev.name + 5);
}
break;
}
NtClose (devhdl);
}
NtClose (dirhdl);
return bufptr - destbuf;
}
#undef print