mirror of
git://sourceware.org/git/newlib-cygwin.git
synced 2025-01-19 12:59:21 +08:00
ca7b4bd236
cc Aldy Hernandez <aldyh@redhat.com> and Andrew MacLeod <amacleod@redhat.com>, they are author of new VRP analysis for GCC, just to make sure I didn't mis-understanding or mis-interpreting anything on GCC site. GCC 11 have better value range analysis, that give GCC more confidence to perform more aggressive optimization, but it cause scalbn/scalbnf get wrong result. Using scalbn to demostrate what happened on GCC 11, see comments with VRP prefix: ```c double scalbn (double x, int n) { /* VRP RESULT: n = [-INF, +INF] */ __int32_t k,hx,lx; ... k = (hx&0x7ff00000)>>20; /* VRP RESULT: k = [0, 2047] */ if (k==0) { /* VRP RESULT: k = 0 */ ... k = ((hx&0x7ff00000)>>20) - 54; if (n< -50000) return tiny*x; /*underflow*/ /* VRP RESULT: k = -54 */ } /* VRP RESULT: k = [-54, 2047] */ if (k==0x7ff) return x+x; /* NaN or Inf */ /* VRP RESULT: k = [-54, 2046] */ k = k+n; if (k > 0x7fe) return huge*copysign(huge,x); /* overflow */ /* VRP RESULT: k = [-INF, 2046] */ /* VRP RESULT: n = [-INF, 2100], because k + n <= 0x7fe is false, so: 1. -INF < [-54, 2046] + n <= 0x7fe(2046) < INF 2. -INF < [-54, 2046] + n <= 2046 < INF 3. -INF < n <= 2046 - [-54, 2046] < INF 4. -INF < n <= [0, 2100] < INF 5. n = [-INF, 2100] */ if (k > 0) /* normal result */ {SET_HIGH_WORD(x,(hx&0x800fffff)|(k<<20)); return x;} if (k <= -54) { /* VRP OPT: Evaluate n > 50000 as true...*/ if (n > 50000) /* in case integer overflow in n+k */ return huge*copysign(huge,x); /*overflow*/ else return tiny*copysign(tiny,x); /*underflow*/ } k += 54; /* subnormal result */ SET_HIGH_WORD(x,(hx&0x800fffff)|(k<<20)); return x*twom54; } ``` However give the input n = INT32_MAX, k = k+n will overflow, and then we expect got `huge*copysign(huge,x)`, but new VRP optimization think `n > 50000` is never be true, so optimize that into `tiny*copysign(tiny,x)`. so the solution here is to moving the overflow handle logic before `k = k + n`.
110 lines
2.8 KiB
C
110 lines
2.8 KiB
C
|
|
/* @(#)s_scalbn.c 5.1 93/09/24 */
|
|
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
|
|
/*
|
|
FUNCTION
|
|
<<scalbn>>, <<scalbnf>>, <<scalbln>>, <<scalblnf>>---scale by power of FLT_RADIX (=2)
|
|
INDEX
|
|
scalbn
|
|
INDEX
|
|
scalbnf
|
|
INDEX
|
|
scalbln
|
|
INDEX
|
|
scalblnf
|
|
|
|
SYNOPSIS
|
|
#include <math.h>
|
|
double scalbn(double <[x]>, int <[n]>);
|
|
float scalbnf(float <[x]>, int <[n]>);
|
|
double scalbln(double <[x]>, long int <[n]>);
|
|
float scalblnf(float <[x]>, long int <[n]>);
|
|
|
|
DESCRIPTION
|
|
The <<scalbn>> and <<scalbln>> functions compute
|
|
@ifnottex
|
|
<[x]> times FLT_RADIX to the power <[n]>.
|
|
@end ifnottex
|
|
@tex
|
|
$x \cdot FLT\_RADIX^n$.
|
|
@end tex
|
|
efficiently. The result is computed by manipulating the exponent, rather than
|
|
by actually performing an exponentiation or multiplication. In this
|
|
floating-point implementation FLT_RADIX=2, which makes the <<scalbn>>
|
|
functions equivalent to the <<ldexp>> functions.
|
|
|
|
RETURNS
|
|
<[x]> times 2 to the power <[n]>. A range error may occur.
|
|
|
|
PORTABILITY
|
|
ANSI C, POSIX
|
|
|
|
SEEALSO
|
|
<<ldexp>>
|
|
|
|
*/
|
|
|
|
/*
|
|
* scalbn (double x, int n)
|
|
* scalbn(x,n) returns x* 2**n computed by exponent
|
|
* manipulation rather than by actually performing an
|
|
* exponentiation or a multiplication.
|
|
*/
|
|
|
|
#include "fdlibm.h"
|
|
|
|
#ifndef _DOUBLE_IS_32BITS
|
|
|
|
#ifdef __STDC__
|
|
static const double
|
|
#else
|
|
static double
|
|
#endif
|
|
two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
|
|
twom54 = 5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */
|
|
huge = 1.0e+300,
|
|
tiny = 1.0e-300;
|
|
|
|
#ifdef __STDC__
|
|
double scalbn (double x, int n)
|
|
#else
|
|
double scalbn (x,n)
|
|
double x; int n;
|
|
#endif
|
|
{
|
|
__int32_t k,hx,lx;
|
|
EXTRACT_WORDS(hx,lx,x);
|
|
k = (hx&0x7ff00000)>>20; /* extract exponent */
|
|
if (k==0) { /* 0 or subnormal x */
|
|
if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */
|
|
x *= two54;
|
|
GET_HIGH_WORD(hx,x);
|
|
k = ((hx&0x7ff00000)>>20) - 54;
|
|
if (n< -50000) return tiny*x; /*underflow*/
|
|
}
|
|
if (k==0x7ff) return x+x; /* NaN or Inf */
|
|
if (n > 50000) /* in case integer overflow in n+k */
|
|
return huge*copysign(huge,x); /*overflow*/
|
|
k = k+n;
|
|
if (k > 0x7fe) return huge*copysign(huge,x); /* overflow */
|
|
if (k > 0) /* normal result */
|
|
{SET_HIGH_WORD(x,(hx&0x800fffff)|(k<<20)); return x;}
|
|
if (k <= -54)
|
|
return tiny*copysign(tiny,x); /*underflow*/
|
|
k += 54; /* subnormal result */
|
|
SET_HIGH_WORD(x,(hx&0x800fffff)|(k<<20));
|
|
return x*twom54;
|
|
}
|
|
|
|
#endif /* _DOUBLE_IS_32BITS */
|