mirror of
git://sourceware.org/git/newlib-cygwin.git
synced 2025-01-22 23:17:28 +08:00
71e187bc07
While working on the strstr patch I noticed several copyright headers of the new math functions are missing closing quotes after ``AS IS. I've added these. Also update spellings of Arm Ltd in a few places (but still use ARM LTD in upper case portion). Finally add SPDX identifiers to make everything consistent.
174 lines
6.3 KiB
C
174 lines
6.3 KiB
C
/* Double-precision e^x function.
|
|
Copyright (c) 2018 Arm Ltd. All rights reserved.
|
|
|
|
SPDX-License-Identifier: BSD-3-Clause
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
1. Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
3. The name of the company may not be used to endorse or promote
|
|
products derived from this software without specific prior written
|
|
permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
|
|
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
|
|
|
|
#include "fdlibm.h"
|
|
#if !__OBSOLETE_MATH
|
|
|
|
#include <math.h>
|
|
#include <stdint.h>
|
|
#include "math_config.h"
|
|
|
|
#define N (1 << EXP_TABLE_BITS)
|
|
#define InvLn2N __exp_data.invln2N
|
|
#define NegLn2hiN __exp_data.negln2hiN
|
|
#define NegLn2loN __exp_data.negln2loN
|
|
#define Shift __exp_data.shift
|
|
#define T __exp_data.tab
|
|
#define C2 __exp_data.poly[5 - EXP_POLY_ORDER]
|
|
#define C3 __exp_data.poly[6 - EXP_POLY_ORDER]
|
|
#define C4 __exp_data.poly[7 - EXP_POLY_ORDER]
|
|
#define C5 __exp_data.poly[8 - EXP_POLY_ORDER]
|
|
#define C6 __exp_data.poly[9 - EXP_POLY_ORDER]
|
|
|
|
/* Handle cases that may overflow or underflow when computing the result that
|
|
is scale*(1+TMP) without intermediate rounding. The bit representation of
|
|
scale is in SBITS, however it has a computed exponent that may have
|
|
overflown into the sign bit so that needs to be adjusted before using it as
|
|
a double. (int32_t)KI is the k used in the argument reduction and exponent
|
|
adjustment of scale, positive k here means the result may overflow and
|
|
negative k means the result may underflow. */
|
|
static inline double
|
|
specialcase (double_t tmp, uint64_t sbits, uint64_t ki)
|
|
{
|
|
double_t scale, y;
|
|
|
|
if ((ki & 0x80000000) == 0)
|
|
{
|
|
/* k > 0, the exponent of scale might have overflowed by <= 460. */
|
|
sbits -= 1009ull << 52;
|
|
scale = asdouble (sbits);
|
|
y = 0x1p1009 * (scale + scale * tmp);
|
|
return check_oflow (y);
|
|
}
|
|
/* k < 0, need special care in the subnormal range. */
|
|
sbits += 1022ull << 52;
|
|
scale = asdouble (sbits);
|
|
y = scale + scale * tmp;
|
|
if (y < 1.0)
|
|
{
|
|
/* Round y to the right precision before scaling it into the subnormal
|
|
range to avoid double rounding that can cause 0.5+E/2 ulp error where
|
|
E is the worst-case ulp error outside the subnormal range. So this
|
|
is only useful if the goal is better than 1 ulp worst-case error. */
|
|
double_t hi, lo;
|
|
lo = scale - y + scale * tmp;
|
|
hi = 1.0 + y;
|
|
lo = 1.0 - hi + y + lo;
|
|
y = eval_as_double (hi + lo) - 1.0;
|
|
/* Avoid -0.0 with downward rounding. */
|
|
if (WANT_ROUNDING && y == 0.0)
|
|
y = 0.0;
|
|
/* The underflow exception needs to be signaled explicitly. */
|
|
force_eval_double (opt_barrier_double (0x1p-1022) * 0x1p-1022);
|
|
}
|
|
y = 0x1p-1022 * y;
|
|
return check_uflow (y);
|
|
}
|
|
|
|
/* Top 12 bits of a double (sign and exponent bits). */
|
|
static inline uint32_t
|
|
top12 (double x)
|
|
{
|
|
return asuint64 (x) >> 52;
|
|
}
|
|
|
|
double
|
|
exp (double x)
|
|
{
|
|
uint32_t abstop;
|
|
uint64_t ki, idx, top, sbits;
|
|
/* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
|
|
double_t kd, z, r, r2, scale, tail, tmp;
|
|
|
|
abstop = top12 (x) & 0x7ff;
|
|
if (unlikely (abstop - top12 (0x1p-54) >= top12 (512.0) - top12 (0x1p-54)))
|
|
{
|
|
if (abstop - top12 (0x1p-54) >= 0x80000000)
|
|
/* Avoid spurious underflow for tiny x. */
|
|
/* Note: 0 is common input. */
|
|
return WANT_ROUNDING ? 1.0 + x : 1.0;
|
|
if (abstop >= top12 (1024.0))
|
|
{
|
|
if (asuint64 (x) == asuint64 (-INFINITY))
|
|
return 0.0;
|
|
if (abstop >= top12 (INFINITY))
|
|
return 1.0 + x;
|
|
if (asuint64 (x) >> 63)
|
|
return __math_uflow (0);
|
|
else
|
|
return __math_oflow (0);
|
|
}
|
|
/* Large x is special cased below. */
|
|
abstop = 0;
|
|
}
|
|
|
|
/* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */
|
|
/* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N]. */
|
|
z = InvLn2N * x;
|
|
#if TOINT_INTRINSICS
|
|
kd = roundtoint (z);
|
|
ki = converttoint (z);
|
|
#elif EXP_USE_TOINT_NARROW
|
|
/* z - kd is in [-0.5-2^-16, 0.5] in all rounding modes. */
|
|
kd = eval_as_double (z + Shift);
|
|
ki = asuint64 (kd) >> 16;
|
|
kd = (double_t) (int32_t) ki;
|
|
#else
|
|
/* z - kd is in [-1, 1] in non-nearest rounding modes. */
|
|
kd = eval_as_double (z + Shift);
|
|
ki = asuint64 (kd);
|
|
kd -= Shift;
|
|
#endif
|
|
r = x + kd * NegLn2hiN + kd * NegLn2loN;
|
|
/* 2^(k/N) ~= scale * (1 + tail). */
|
|
idx = 2 * (ki % N);
|
|
top = ki << (52 - EXP_TABLE_BITS);
|
|
tail = asdouble (T[idx]);
|
|
/* This is only a valid scale when -1023*N < k < 1024*N. */
|
|
sbits = T[idx + 1] + top;
|
|
/* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1). */
|
|
/* Evaluation is optimized assuming superscalar pipelined execution. */
|
|
r2 = r * r;
|
|
/* Without fma the worst case error is 0.25/N ulp larger. */
|
|
/* Worst case error is less than 0.5+1.11/N+(abs poly error * 2^53) ulp. */
|
|
#if EXP_POLY_ORDER == 4
|
|
tmp = tail + r + r2 * C2 + r * r2 * (C3 + r * C4);
|
|
#elif EXP_POLY_ORDER == 5
|
|
tmp = tail + r + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5);
|
|
#elif EXP_POLY_ORDER == 6
|
|
tmp = tail + r + r2 * (0.5 + r * C3) + r2 * r2 * (C4 + r * C5 + r2 * C6);
|
|
#endif
|
|
if (unlikely (abstop == 0))
|
|
return specialcase (tmp, sbits, ki);
|
|
scale = asdouble (sbits);
|
|
/* Note: tmp == 0 or |tmp| > 2^-65 and scale > 2^-739, so there
|
|
is no spurious underflow here even without fma. */
|
|
return scale + scale * tmp;
|
|
}
|
|
#endif
|