173 lines
5.6 KiB
C
173 lines
5.6 KiB
C
/* Header for single-precision sin/cos/sincos functions.
|
|
Copyright (c) 2018 Arm Ltd. All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
1. Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
3. The name of the company may not be used to endorse or promote
|
|
products derived from this software without specific prior written
|
|
permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS AND ANY EXPRESS OR IMPLIED
|
|
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
|
|
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
|
|
|
|
#include <stdint.h>
|
|
#include <math.h>
|
|
#include "math_config.h"
|
|
|
|
/* 2PI * 2^-64. */
|
|
static const double pi63 = 0x1.921FB54442D18p-62;
|
|
/* PI / 4. */
|
|
static const double pio4 = 0x1.921FB54442D18p-1;
|
|
|
|
/* The constants and polynomials for sine and cosine. */
|
|
typedef struct
|
|
{
|
|
double sign[4]; /* Sign of sine in quadrants 0..3. */
|
|
double hpi_inv; /* 2 / PI ( * 2^24 if !TOINT_INTRINSICS). */
|
|
double hpi; /* PI / 2. */
|
|
double c0, c1, c2, c3, c4; /* Cosine polynomial. */
|
|
double s1, s2, s3; /* Sine polynomial. */
|
|
} sincos_t;
|
|
|
|
/* Polynomial data (the cosine polynomial is negated in the 2nd entry). */
|
|
extern const sincos_t __sincosf_table[2] HIDDEN;
|
|
|
|
/* Table with 4/PI to 192 bit precision. */
|
|
extern const uint32_t __inv_pio4[] HIDDEN;
|
|
|
|
/* Top 12 bits of the float representation with the sign bit cleared. */
|
|
static inline uint32_t
|
|
abstop12 (float x)
|
|
{
|
|
return (asuint (x) >> 20) & 0x7ff;
|
|
}
|
|
|
|
/* Compute the sine and cosine of inputs X and X2 (X squared), using the
|
|
polynomial P and store the results in SINP and COSP. N is the quadrant,
|
|
if odd the cosine and sine polynomials are swapped. */
|
|
static inline void
|
|
sincosf_poly (double x, double x2, const sincos_t *p, int n, float *sinp,
|
|
float *cosp)
|
|
{
|
|
double x3, x4, x5, x6, s, c, c1, c2, s1;
|
|
|
|
x4 = x2 * x2;
|
|
x3 = x2 * x;
|
|
c2 = p->c3 + x2 * p->c4;
|
|
s1 = p->s2 + x2 * p->s3;
|
|
|
|
/* Swap sin/cos result based on quadrant. */
|
|
float *tmp = (n & 1 ? cosp : sinp);
|
|
cosp = (n & 1 ? sinp : cosp);
|
|
sinp = tmp;
|
|
|
|
c1 = p->c0 + x2 * p->c1;
|
|
x5 = x3 * x2;
|
|
x6 = x4 * x2;
|
|
|
|
s = x + x3 * p->s1;
|
|
c = c1 + x4 * p->c2;
|
|
|
|
*sinp = s + x5 * s1;
|
|
*cosp = c + x6 * c2;
|
|
}
|
|
|
|
/* Return the sine of inputs X and X2 (X squared) using the polynomial P.
|
|
N is the quadrant, and if odd the cosine polynomial is used. */
|
|
static inline float
|
|
sinf_poly (double x, double x2, const sincos_t *p, int n)
|
|
{
|
|
double x3, x4, x6, x7, s, c, c1, c2, s1;
|
|
|
|
if ((n & 1) == 0)
|
|
{
|
|
x3 = x * x2;
|
|
s1 = p->s2 + x2 * p->s3;
|
|
|
|
x7 = x3 * x2;
|
|
s = x + x3 * p->s1;
|
|
|
|
return s + x7 * s1;
|
|
}
|
|
else
|
|
{
|
|
x4 = x2 * x2;
|
|
c2 = p->c3 + x2 * p->c4;
|
|
c1 = p->c0 + x2 * p->c1;
|
|
|
|
x6 = x4 * x2;
|
|
c = c1 + x4 * p->c2;
|
|
|
|
return c + x6 * c2;
|
|
}
|
|
}
|
|
|
|
/* Fast range reduction using single multiply-subtract. Return the modulo of
|
|
X as a value between -PI/4 and PI/4 and store the quadrant in NP.
|
|
The values for PI/2 and 2/PI are accessed via P. Since PI/2 as a double
|
|
is accurate to 55 bits and the worst-case cancellation happens at 6 * PI/4,
|
|
the result is accurate for |X| <= 120.0. */
|
|
static inline double
|
|
reduce_fast (double x, const sincos_t *p, int *np)
|
|
{
|
|
double r;
|
|
#if TOINT_INTRINSICS
|
|
/* Use fast round and lround instructions when available. */
|
|
r = x * p->hpi_inv;
|
|
*np = converttoint (r);
|
|
return x - roundtoint (r) * p->hpi;
|
|
#else
|
|
/* Use scaled float to int conversion with explicit rounding.
|
|
hpi_inv is prescaled by 2^24 so the quadrant ends up in bits 24..31.
|
|
This avoids inaccuracies introduced by truncating negative values. */
|
|
r = x * p->hpi_inv;
|
|
int n = ((int32_t)r + 0x800000) >> 24;
|
|
*np = n;
|
|
return x - n * p->hpi;
|
|
#endif
|
|
}
|
|
|
|
/* Reduce the range of XI to a multiple of PI/2 using fast integer arithmetic.
|
|
XI is a reinterpreted float and must be >= 2.0f (the sign bit is ignored).
|
|
Return the modulo between -PI/4 and PI/4 and store the quadrant in NP.
|
|
Reduction uses a table of 4/PI with 192 bits of precision. A 32x96->128 bit
|
|
multiply computes the exact 2.62-bit fixed-point modulo. Since the result
|
|
can have at most 29 leading zeros after the binary point, the double
|
|
precision result is accurate to 33 bits. */
|
|
static inline double
|
|
reduce_large (uint32_t xi, int *np)
|
|
{
|
|
const uint32_t *arr = &__inv_pio4[(xi >> 26) & 15];
|
|
int shift = (xi >> 23) & 7;
|
|
uint64_t n, res0, res1, res2;
|
|
|
|
xi = (xi & 0xffffff) | 0x800000;
|
|
xi <<= shift;
|
|
|
|
res0 = xi * arr[0];
|
|
res1 = (uint64_t)xi * arr[4];
|
|
res2 = (uint64_t)xi * arr[8];
|
|
res0 = (res2 >> 32) | (res0 << 32);
|
|
res0 += res1;
|
|
|
|
n = (res0 + (1ULL << 61)) >> 62;
|
|
res0 -= n << 62;
|
|
double x = (int64_t)res0;
|
|
*np = n;
|
|
return x * pi63;
|
|
}
|