mirror of
git://sourceware.org/git/newlib-cygwin.git
synced 2025-01-22 15:07:43 +08:00
5e24839658
This fix comes from glibc, from files which originated from the same place as the newlib files. Those files in glibc carry the same license as the newlib files. Bug 14155 is spurious underflow exceptions from Bessel functions for large arguments. (The correct results for large x are roughly constant * sin or cos (x + constant) / sqrt (x), so no underflow exceptions should occur based on the final result.) There are various places underflows may occur in the intermediate calculations that cause the failures listed in that bug. This patch fixes problems for the double version where underflows occur in calculating the intermediate functions P and Q (in particular, x**-12 gets computed while calculating Q). Appropriate approximations are used for P and Q for arguments at least 0x1p28 and above to avoid the underflows. For sufficiently large x - 0x1p129 and above - the code already has a cut-off to avoid calculating P and Q at all, which means the approximations -0.125 / x and 0.375 / x can't themselves cause underflows calculating Q. This cut-off is heuristically reasonable for the point beyond which Q can be neglected (based on expecting around 0x1p-64 to be the least absolute value of sin or cos for large arguments representable in double). The float versions use a cut-off 0x1p17, which is less heuristically justifiable but should still only affect values near zeroes of the Bessel functions where these implementations are intrinsically inaccurate anyway (bugs 14469-14472), and should serve to avoid underflows (the float underflow for jn in bug 14155 probably comes from the recurrence to compute jn). ldbl-96 uses 0x1p129, which may not really be enough heuristically (0x1p143 or so might be safer - 143 = 64 + 79, number of mantissa bits plus total number of significant bits in representation) but again should avoid underflows and only affect values where the code is substantially inaccurate anyway. ldbl-128 and ldbl-128ibm share a completely different implementation with no such cut-off, which I propose to fix separately. Signed-off-by: Keith Packard <keithp@keithp.com>
440 lines
12 KiB
C
440 lines
12 KiB
C
/* ef_j0.c -- float version of e_j0.c.
|
|
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
|
*/
|
|
|
|
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
|
|
#include "fdlibm.h"
|
|
|
|
#ifdef __STDC__
|
|
static float pzerof(float), qzerof(float);
|
|
#else
|
|
static float pzerof(), qzerof();
|
|
#endif
|
|
|
|
#ifdef __STDC__
|
|
static const float
|
|
#else
|
|
static float
|
|
#endif
|
|
huge = 1e30,
|
|
one = 1.0,
|
|
invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */
|
|
tpi = 6.3661974669e-01, /* 0x3f22f983 */
|
|
/* R0/S0 on [0, 2.00] */
|
|
R02 = 1.5625000000e-02, /* 0x3c800000 */
|
|
R03 = -1.8997929874e-04, /* 0xb947352e */
|
|
R04 = 1.8295404516e-06, /* 0x35f58e88 */
|
|
R05 = -4.6183270541e-09, /* 0xb19eaf3c */
|
|
S01 = 1.5619102865e-02, /* 0x3c7fe744 */
|
|
S02 = 1.1692678527e-04, /* 0x38f53697 */
|
|
S03 = 5.1354652442e-07, /* 0x3509daa6 */
|
|
S04 = 1.1661400734e-09; /* 0x30a045e8 */
|
|
|
|
#ifdef __STDC__
|
|
static const float zero = 0.0;
|
|
#else
|
|
static float zero = 0.0;
|
|
#endif
|
|
|
|
#ifdef __STDC__
|
|
float __ieee754_j0f(float x)
|
|
#else
|
|
float __ieee754_j0f(x)
|
|
float x;
|
|
#endif
|
|
{
|
|
float z, s,c,ss,cc,r,u,v;
|
|
__int32_t hx,ix;
|
|
|
|
GET_FLOAT_WORD(hx,x);
|
|
ix = hx&0x7fffffff;
|
|
if(!FLT_UWORD_IS_FINITE(ix)) return one/(x*x);
|
|
x = fabsf(x);
|
|
if(ix >= 0x40000000) { /* |x| >= 2.0 */
|
|
s = sinf(x);
|
|
c = cosf(x);
|
|
ss = s-c;
|
|
cc = s+c;
|
|
if(ix<=FLT_UWORD_HALF_MAX) { /* make sure x+x not overflow */
|
|
z = -cosf(x+x);
|
|
if ((s*c)<zero) cc = z/ss;
|
|
else ss = z/cc;
|
|
}
|
|
/*
|
|
* j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
|
|
* y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
|
|
*/
|
|
if(ix>0x5c000000) z = (invsqrtpi*cc)/__ieee754_sqrtf(x);
|
|
else {
|
|
u = pzerof(x); v = qzerof(x);
|
|
z = invsqrtpi*(u*cc-v*ss)/__ieee754_sqrtf(x);
|
|
}
|
|
return z;
|
|
}
|
|
if(ix<0x39000000) { /* |x| < 2**-13 */
|
|
if(huge+x>one) { /* raise inexact if x != 0 */
|
|
if(ix<0x32000000) return one; /* |x|<2**-27 */
|
|
else return one - (float)0.25*x*x;
|
|
}
|
|
}
|
|
z = x*x;
|
|
r = z*(R02+z*(R03+z*(R04+z*R05)));
|
|
s = one+z*(S01+z*(S02+z*(S03+z*S04)));
|
|
if(ix < 0x3F800000) { /* |x| < 1.00 */
|
|
return one + z*((float)-0.25+(r/s));
|
|
} else {
|
|
u = (float)0.5*x;
|
|
return((one+u)*(one-u)+z*(r/s));
|
|
}
|
|
}
|
|
|
|
#ifdef __STDC__
|
|
static const float
|
|
#else
|
|
static float
|
|
#endif
|
|
u00 = -7.3804296553e-02, /* 0xbd9726b5 */
|
|
u01 = 1.7666645348e-01, /* 0x3e34e80d */
|
|
u02 = -1.3818567619e-02, /* 0xbc626746 */
|
|
u03 = 3.4745343146e-04, /* 0x39b62a69 */
|
|
u04 = -3.8140706238e-06, /* 0xb67ff53c */
|
|
u05 = 1.9559013964e-08, /* 0x32a802ba */
|
|
u06 = -3.9820518410e-11, /* 0xae2f21eb */
|
|
v01 = 1.2730483897e-02, /* 0x3c509385 */
|
|
v02 = 7.6006865129e-05, /* 0x389f65e0 */
|
|
v03 = 2.5915085189e-07, /* 0x348b216c */
|
|
v04 = 4.4111031494e-10; /* 0x2ff280c2 */
|
|
|
|
#ifdef __STDC__
|
|
float __ieee754_y0f(float x)
|
|
#else
|
|
float __ieee754_y0f(x)
|
|
float x;
|
|
#endif
|
|
{
|
|
float z, s,c,ss,cc,u,v;
|
|
__int32_t hx,ix;
|
|
|
|
GET_FLOAT_WORD(hx,x);
|
|
ix = 0x7fffffff&hx;
|
|
/* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0 */
|
|
if(!FLT_UWORD_IS_FINITE(ix)) return one/(x+x*x);
|
|
if(FLT_UWORD_IS_ZERO(ix)) return -one/zero;
|
|
if(hx<0) return zero/zero;
|
|
if(ix >= 0x40000000) { /* |x| >= 2.0 */
|
|
/* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
|
|
* where x0 = x-pi/4
|
|
* Better formula:
|
|
* cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
|
|
* = 1/sqrt(2) * (sin(x) + cos(x))
|
|
* sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
|
|
* = 1/sqrt(2) * (sin(x) - cos(x))
|
|
* To avoid cancellation, use
|
|
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
|
* to compute the worse one.
|
|
*/
|
|
s = sinf(x);
|
|
c = cosf(x);
|
|
ss = s-c;
|
|
cc = s+c;
|
|
/*
|
|
* j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
|
|
* y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
|
|
*/
|
|
if(ix<=FLT_UWORD_HALF_MAX) { /* make sure x+x not overflow */
|
|
z = -cosf(x+x);
|
|
if ((s*c)<zero) cc = z/ss;
|
|
else ss = z/cc;
|
|
}
|
|
if(ix>0x5c000000) z = (invsqrtpi*ss)/__ieee754_sqrtf(x);
|
|
else {
|
|
u = pzerof(x); v = qzerof(x);
|
|
z = invsqrtpi*(u*ss+v*cc)/__ieee754_sqrtf(x);
|
|
}
|
|
return z;
|
|
}
|
|
if(ix<=0x39800000) { /* x < 2**-27 */
|
|
return(u00 + tpi*__ieee754_logf(x));
|
|
}
|
|
z = x*x;
|
|
u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
|
|
v = one+z*(v01+z*(v02+z*(v03+z*v04)));
|
|
return(u/v + tpi*(__ieee754_j0f(x)*__ieee754_logf(x)));
|
|
}
|
|
|
|
/* The asymptotic expansions of pzero is
|
|
* 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x.
|
|
* For x >= 2, We approximate pzero by
|
|
* pzero(x) = 1 + (R/S)
|
|
* where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
|
|
* S = 1 + pS0*s^2 + ... + pS4*s^10
|
|
* and
|
|
* | pzero(x)-1-R/S | <= 2 ** ( -60.26)
|
|
*/
|
|
#ifdef __STDC__
|
|
static const float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
|
|
#else
|
|
static float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
|
|
#endif
|
|
0.0000000000e+00, /* 0x00000000 */
|
|
-7.0312500000e-02, /* 0xbd900000 */
|
|
-8.0816707611e+00, /* 0xc1014e86 */
|
|
-2.5706311035e+02, /* 0xc3808814 */
|
|
-2.4852163086e+03, /* 0xc51b5376 */
|
|
-5.2530439453e+03, /* 0xc5a4285a */
|
|
};
|
|
#ifdef __STDC__
|
|
static const float pS8[5] = {
|
|
#else
|
|
static float pS8[5] = {
|
|
#endif
|
|
1.1653436279e+02, /* 0x42e91198 */
|
|
3.8337448730e+03, /* 0x456f9beb */
|
|
4.0597855469e+04, /* 0x471e95db */
|
|
1.1675296875e+05, /* 0x47e4087c */
|
|
4.7627726562e+04, /* 0x473a0bba */
|
|
};
|
|
#ifdef __STDC__
|
|
static const float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
|
|
#else
|
|
static float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
|
|
#endif
|
|
-1.1412546255e-11, /* 0xad48c58a */
|
|
-7.0312492549e-02, /* 0xbd8fffff */
|
|
-4.1596107483e+00, /* 0xc0851b88 */
|
|
-6.7674766541e+01, /* 0xc287597b */
|
|
-3.3123129272e+02, /* 0xc3a59d9b */
|
|
-3.4643338013e+02, /* 0xc3ad3779 */
|
|
};
|
|
#ifdef __STDC__
|
|
static const float pS5[5] = {
|
|
#else
|
|
static float pS5[5] = {
|
|
#endif
|
|
6.0753936768e+01, /* 0x42730408 */
|
|
1.0512523193e+03, /* 0x44836813 */
|
|
5.9789707031e+03, /* 0x45bad7c4 */
|
|
9.6254453125e+03, /* 0x461665c8 */
|
|
2.4060581055e+03, /* 0x451660ee */
|
|
};
|
|
|
|
#ifdef __STDC__
|
|
static const float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
|
|
#else
|
|
static float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
|
|
#endif
|
|
-2.5470459075e-09, /* 0xb12f081b */
|
|
-7.0311963558e-02, /* 0xbd8fffb8 */
|
|
-2.4090321064e+00, /* 0xc01a2d95 */
|
|
-2.1965976715e+01, /* 0xc1afba52 */
|
|
-5.8079170227e+01, /* 0xc2685112 */
|
|
-3.1447946548e+01, /* 0xc1fb9565 */
|
|
};
|
|
#ifdef __STDC__
|
|
static const float pS3[5] = {
|
|
#else
|
|
static float pS3[5] = {
|
|
#endif
|
|
3.5856033325e+01, /* 0x420f6c94 */
|
|
3.6151397705e+02, /* 0x43b4c1ca */
|
|
1.1936077881e+03, /* 0x44953373 */
|
|
1.1279968262e+03, /* 0x448cffe6 */
|
|
1.7358093262e+02, /* 0x432d94b8 */
|
|
};
|
|
|
|
#ifdef __STDC__
|
|
static const float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
|
#else
|
|
static float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
|
#endif
|
|
-8.8753431271e-08, /* 0xb3be98b7 */
|
|
-7.0303097367e-02, /* 0xbd8ffb12 */
|
|
-1.4507384300e+00, /* 0xbfb9b1cc */
|
|
-7.6356959343e+00, /* 0xc0f4579f */
|
|
-1.1193166733e+01, /* 0xc1331736 */
|
|
-3.2336456776e+00, /* 0xc04ef40d */
|
|
};
|
|
#ifdef __STDC__
|
|
static const float pS2[5] = {
|
|
#else
|
|
static float pS2[5] = {
|
|
#endif
|
|
2.2220300674e+01, /* 0x41b1c32d */
|
|
1.3620678711e+02, /* 0x430834f0 */
|
|
2.7047027588e+02, /* 0x43873c32 */
|
|
1.5387539673e+02, /* 0x4319e01a */
|
|
1.4657617569e+01, /* 0x416a859a */
|
|
};
|
|
|
|
#ifdef __STDC__
|
|
static float pzerof(float x)
|
|
#else
|
|
static float pzerof(x)
|
|
float x;
|
|
#endif
|
|
{
|
|
#ifdef __STDC__
|
|
const float *p,*q;
|
|
#else
|
|
float *p,*q;
|
|
#endif
|
|
float z,r,s;
|
|
__int32_t ix;
|
|
GET_FLOAT_WORD(ix,x);
|
|
ix &= 0x7fffffff;
|
|
if(ix>=0x41000000) {p = pR8; q= pS8;}
|
|
else if(ix>=0x40f71c58){p = pR5; q= pS5;}
|
|
else if(ix>=0x4036db68){p = pR3; q= pS3;}
|
|
else {p = pR2; q= pS2;}
|
|
z = one/(x*x);
|
|
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
|
|
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
|
|
return one+ r/s;
|
|
}
|
|
|
|
|
|
/* For x >= 8, the asymptotic expansions of qzero is
|
|
* -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
|
|
* We approximate qzero by
|
|
* qzero(x) = s*(-1.25 + (R/S))
|
|
* where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
|
|
* S = 1 + qS0*s^2 + ... + qS5*s^12
|
|
* and
|
|
* | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22)
|
|
*/
|
|
#ifdef __STDC__
|
|
static const float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
|
|
#else
|
|
static float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
|
|
#endif
|
|
0.0000000000e+00, /* 0x00000000 */
|
|
7.3242187500e-02, /* 0x3d960000 */
|
|
1.1768206596e+01, /* 0x413c4a93 */
|
|
5.5767340088e+02, /* 0x440b6b19 */
|
|
8.8591972656e+03, /* 0x460a6cca */
|
|
3.7014625000e+04, /* 0x471096a0 */
|
|
};
|
|
#ifdef __STDC__
|
|
static const float qS8[6] = {
|
|
#else
|
|
static float qS8[6] = {
|
|
#endif
|
|
1.6377603149e+02, /* 0x4323c6aa */
|
|
8.0983447266e+03, /* 0x45fd12c2 */
|
|
1.4253829688e+05, /* 0x480b3293 */
|
|
8.0330925000e+05, /* 0x49441ed4 */
|
|
8.4050156250e+05, /* 0x494d3359 */
|
|
-3.4389928125e+05, /* 0xc8a7eb69 */
|
|
};
|
|
|
|
#ifdef __STDC__
|
|
static const float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
|
|
#else
|
|
static float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
|
|
#endif
|
|
1.8408595828e-11, /* 0x2da1ec79 */
|
|
7.3242180049e-02, /* 0x3d95ffff */
|
|
5.8356351852e+00, /* 0x40babd86 */
|
|
1.3511157227e+02, /* 0x43071c90 */
|
|
1.0272437744e+03, /* 0x448067cd */
|
|
1.9899779053e+03, /* 0x44f8bf4b */
|
|
};
|
|
#ifdef __STDC__
|
|
static const float qS5[6] = {
|
|
#else
|
|
static float qS5[6] = {
|
|
#endif
|
|
8.2776611328e+01, /* 0x42a58da0 */
|
|
2.0778142090e+03, /* 0x4501dd07 */
|
|
1.8847289062e+04, /* 0x46933e94 */
|
|
5.6751113281e+04, /* 0x475daf1d */
|
|
3.5976753906e+04, /* 0x470c88c1 */
|
|
-5.3543427734e+03, /* 0xc5a752be */
|
|
};
|
|
|
|
#ifdef __STDC__
|
|
static const float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
|
|
#else
|
|
static float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
|
|
#endif
|
|
4.3774099900e-09, /* 0x3196681b */
|
|
7.3241114616e-02, /* 0x3d95ff70 */
|
|
3.3442313671e+00, /* 0x405607e3 */
|
|
4.2621845245e+01, /* 0x422a7cc5 */
|
|
1.7080809021e+02, /* 0x432acedf */
|
|
1.6673394775e+02, /* 0x4326bbe4 */
|
|
};
|
|
#ifdef __STDC__
|
|
static const float qS3[6] = {
|
|
#else
|
|
static float qS3[6] = {
|
|
#endif
|
|
4.8758872986e+01, /* 0x42430916 */
|
|
7.0968920898e+02, /* 0x44316c1c */
|
|
3.7041481934e+03, /* 0x4567825f */
|
|
6.4604252930e+03, /* 0x45c9e367 */
|
|
2.5163337402e+03, /* 0x451d4557 */
|
|
-1.4924745178e+02, /* 0xc3153f59 */
|
|
};
|
|
|
|
#ifdef __STDC__
|
|
static const float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
|
#else
|
|
static float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
|
#endif
|
|
1.5044444979e-07, /* 0x342189db */
|
|
7.3223426938e-02, /* 0x3d95f62a */
|
|
1.9981917143e+00, /* 0x3fffc4bf */
|
|
1.4495602608e+01, /* 0x4167edfd */
|
|
3.1666231155e+01, /* 0x41fd5471 */
|
|
1.6252708435e+01, /* 0x4182058c */
|
|
};
|
|
#ifdef __STDC__
|
|
static const float qS2[6] = {
|
|
#else
|
|
static float qS2[6] = {
|
|
#endif
|
|
3.0365585327e+01, /* 0x41f2ecb8 */
|
|
2.6934811401e+02, /* 0x4386ac8f */
|
|
8.4478375244e+02, /* 0x44533229 */
|
|
8.8293585205e+02, /* 0x445cbbe5 */
|
|
2.1266638184e+02, /* 0x4354aa98 */
|
|
-5.3109550476e+00, /* 0xc0a9f358 */
|
|
};
|
|
|
|
#ifdef __STDC__
|
|
static float qzerof(float x)
|
|
#else
|
|
static float qzerof(x)
|
|
float x;
|
|
#endif
|
|
{
|
|
#ifdef __STDC__
|
|
const float *p,*q;
|
|
#else
|
|
float *p,*q;
|
|
#endif
|
|
float s,r,z;
|
|
__int32_t ix;
|
|
GET_FLOAT_WORD(ix,x);
|
|
ix &= 0x7fffffff;
|
|
if(ix>=0x41000000) {p = qR8; q= qS8;}
|
|
else if(ix>=0x40f71c58){p = qR5; q= qS5;}
|
|
else if(ix>=0x4036db68){p = qR3; q= qS3;}
|
|
else {p = qR2; q= qS2;}
|
|
z = one/(x*x);
|
|
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
|
|
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
|
|
return (-(float).125 + r/s)/x;
|
|
}
|