4
0
mirror of git://sourceware.org/git/newlib-cygwin.git synced 2025-02-04 21:40:34 +08:00
Kwok Cheung Yeung 125e39bfea amdgcn: Add vectorized math routines
This implements a set of vectorized math routines to be used by the
compiler auto-vectorizer.  Versions for vectors with 2 lanes up to
64 lanes (in powers of 2) are provided.

These routines are based on the scalar versions of the math routines in
libm/common, libm/math and libm/mathfp.  They make extensive use of the GCC
C vector extensions and GCN-specific builtins in GCC.
2022-12-16 12:18:14 -05:00

83 lines
2.5 KiB
C

/******************************************************************
* The following routines are coded directly from the algorithms
* and coefficients given in "Software Manual for the Elementary
* Functions" by William J. Cody, Jr. and William Waite, Prentice
* Hall, 1980.
******************************************************************/
/* Based on newlib/libm/mathfp/s_logarithm.c in Newlib. */
#include "amdgcnmach.h"
v64si v64df_finite (v64df);
v64si v64df_isnan (v64df);
static const double a[] = { -0.64124943423745581147e+02,
0.16383943563021534222e+02,
-0.78956112887481257267 };
static const double b[] = { -0.76949932108494879777e+03,
0.31203222091924532844e+03,
-0.35667977739034646171e+02 };
static const double C1 = 22713.0 / 32768.0;
static const double C2 = 1.428606820309417232e-06;
#if defined (__has_builtin) \
&& __has_builtin (__builtin_gcn_frexpv_mant) \
&& __has_builtin (__builtin_gcn_frexpv_exp) \
DEF_VD_MATH_FUNC (v64df, log, v64df x)
{
FUNCTION_INIT (v64df);
/* Check for domain/range errors here. */
VECTOR_IF (x == 0.0, cond)
errno = ERANGE;
VECTOR_RETURN (VECTOR_INIT (-z_infinity.d), cond);
VECTOR_ELSEIF (x < 0.0, cond)
errno = EDOM;
VECTOR_RETURN (VECTOR_INIT (z_notanum.d), cond);
VECTOR_ELSEIF (__builtin_convertvector (~v64df_finite (x), v64di), cond)
VECTOR_RETURN (VECTOR_MERGE (VECTOR_INIT (z_notanum.d),
VECTOR_INIT (z_infinity.d),
v64df_isnan (x)),
cond);
VECTOR_ENDIF
/* Get the exponent and mantissa where x = f * 2^N. */
v64df f = __builtin_gcn_frexpv_mant (x);
v64si N = __builtin_gcn_frexpv_exp (x);
v64df z = f - 0.5;
VECTOR_IF (f > __SQRT_HALF, cond)
VECTOR_COND_MOVE (z, (z - 0.5) / (f * 0.5 + 0.5), cond);
VECTOR_ELSE (cond)
VECTOR_COND_MOVE (N, N - 1, cond);
VECTOR_COND_MOVE (z, z / (z * 0.5 + 0.5), cond);
VECTOR_ENDIF
v64df w = z * z;
/* Use Newton's method with 4 terms. */
z += z * w * ((a[2] * w + a[1]) * w + a[0]) / (((w + b[2]) * w + b[1]) * w + b[0]);
v64df Nf = __builtin_convertvector (N, v64df);
VECTOR_COND_MOVE (z, (Nf * C2 + z) + Nf * C1, N != 0);
VECTOR_RETURN (z, NO_COND);
FUNCTION_RETURN;
}
DEF_VARIANTS (log, df, df)
DEF_VD_MATH_FUNC (v64df, log1p, v64df x)
{
/* TODO: Implement algorithm with better precision. */
return v64df_log_aux (1 + x, __mask);
}
DEF_VARIANTS (log1p, df, df)
#endif