mirror of
git://sourceware.org/git/newlib-cygwin.git
synced 2025-01-25 08:37:33 +08:00
d3bd3632ac
* libc/sys/linux/include/cmathcalls.h: New file. * libc/sys/linux/include/complex.h: New file. * libc/sys/linux/machine/i386/huge_val.h: New file * libm/math/w_sincos.c: New file * libm/math/wf_sincos.c: New file * libm/mathfp/s_sincos.c: New file * libm/mathfp/sf_sincos.c: New file * Makefile.am (LIBC_OBJECTLISTS): Add cmath/objectlist.awk.in. * libc/include/math.h: Add sincos and sincosf declarations. * libc/sys/linux/Makefile.am (SUBDIRS): Add cmath. (SUBLIBS): Likewise. * libc/sys/linux/configure.in (AC_OUTPUT): Add cmath. * libm/math/Makefile.am (src): Add w_sincos.c. (fsrc): Add wf_sincos.c. * libm/mathfp/Makefile.am (src): Add s_sincos.c (fsrc): Add sf_sincos.c.
115 lines
2.9 KiB
C
115 lines
2.9 KiB
C
/* Complex square root of double value.
|
|
Copyright (C) 1997, 1998 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
Based on an algorithm by Stephen L. Moshier <moshier@world.std.com>.
|
|
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, write to the Free
|
|
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
|
02111-1307 USA. */
|
|
|
|
#include <complex.h>
|
|
#include <math.h>
|
|
|
|
#include "math_private.h"
|
|
|
|
|
|
__complex__ double
|
|
__csqrt (__complex__ double x)
|
|
{
|
|
__complex__ double res;
|
|
int rcls = fpclassify (__real__ x);
|
|
int icls = fpclassify (__imag__ x);
|
|
|
|
if (rcls <= FP_INFINITE || icls <= FP_INFINITE)
|
|
{
|
|
if (icls == FP_INFINITE)
|
|
{
|
|
__real__ res = HUGE_VAL;
|
|
__imag__ res = __imag__ x;
|
|
}
|
|
else if (rcls == FP_INFINITE)
|
|
{
|
|
if (__real__ x < 0.0)
|
|
{
|
|
__real__ res = icls == FP_NAN ? __nan ("") : 0;
|
|
__imag__ res = __copysign (HUGE_VAL, __imag__ x);
|
|
}
|
|
else
|
|
{
|
|
__real__ res = __real__ x;
|
|
__imag__ res = (icls == FP_NAN
|
|
? __nan ("") : __copysign (0.0, __imag__ x));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
__real__ res = __nan ("");
|
|
__imag__ res = __nan ("");
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (icls == FP_ZERO)
|
|
{
|
|
if (__real__ x < 0.0)
|
|
{
|
|
__real__ res = 0.0;
|
|
__imag__ res = __copysign (__ieee754_sqrt (-__real__ x),
|
|
__imag__ x);
|
|
}
|
|
else
|
|
{
|
|
__real__ res = fabs (__ieee754_sqrt (__real__ x));
|
|
__imag__ res = __copysign (0.0, __imag__ x);
|
|
}
|
|
}
|
|
else if (rcls == FP_ZERO)
|
|
{
|
|
double r = __ieee754_sqrt (0.5 * fabs (__imag__ x));
|
|
|
|
__real__ res = __copysign (r, __imag__ x);
|
|
__imag__ res = r;
|
|
}
|
|
else
|
|
{
|
|
double d, r, s;
|
|
|
|
d = __ieee754_hypot (__real__ x, __imag__ x);
|
|
/* Use the identity 2 Re res Im res = Im x
|
|
to avoid cancellation error in d +/- Re x. */
|
|
if (__real__ x > 0)
|
|
{
|
|
r = __ieee754_sqrt (0.5 * d + 0.5 * __real__ x);
|
|
s = (0.5 * __imag__ x) / r;
|
|
}
|
|
else
|
|
{
|
|
s = __ieee754_sqrt (0.5 * d - 0.5 * __real__ x);
|
|
r = fabs ((0.5 * __imag__ x) / s);
|
|
}
|
|
|
|
__real__ res = r;
|
|
__imag__ res = __copysign (s, __imag__ x);
|
|
}
|
|
}
|
|
|
|
return res;
|
|
}
|
|
weak_alias (__csqrt, csqrt)
|
|
#ifdef NO_LONG_DOUBLE
|
|
strong_alias (__csqrt, __csqrtl)
|
|
weak_alias (__csqrt, csqrtl)
|
|
#endif
|