newlib-cygwin/newlib/libc/xdr/xdr.c

1009 lines
19 KiB
C

/*
* Copyright (c) 2009, Sun Microsystems, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* - Neither the name of Sun Microsystems, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* xdr.c, Generic XDR routines implementation.
*
* Copyright (C) 1986, Sun Microsystems, Inc.
*
* These are the "generic" xdr routines used to serialize and de-serialize
* most common data items. See xdr.h for more info on the interface to
* xdr.
*/
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <rpc/types.h>
#include <rpc/xdr.h>
#include "xdr_private.h"
/*
* constants specific to the xdr "protocol"
*/
#define XDR_FALSE ((long) 0)
#define XDR_TRUE ((long) 1)
#define LASTUNSIGNED ((u_int) 0-1)
/*
* for unit alignment
*/
static const char xdr_zero[BYTES_PER_XDR_UNIT] = { 0, 0, 0, 0 };
/*
* Free a data structure using XDR
* Not a filter, but a convenient utility nonetheless
*/
void
xdr_free (xdrproc_t proc,
void * objp)
{
XDR x;
x.x_op = XDR_FREE;
(*proc) (&x, objp);
}
/*
* XDR nothing
*/
bool_t
xdr_void (void)
{
return TRUE;
}
/*
* XDR integers
*/
bool_t
xdr_int (XDR * xdrs,
int * ip)
{
#if INT_MAX < LONG_MAX
long l;
switch (xdrs->x_op)
{
case XDR_ENCODE:
l = (long) *ip;
return (XDR_PUTLONG (xdrs, &l));
case XDR_DECODE:
if (!XDR_GETLONG (xdrs, &l))
{
return FALSE;
}
*ip = (int) l;
return TRUE;
case XDR_FREE:
return TRUE;
}
return FALSE;
#elif INT_MAX == LONG_MAX
return xdr_long (xdrs, (long *) ip);
#else
# error Unexpected integer sizes in xdr_int()
#endif
}
/*
* XDR unsigned integers
*/
bool_t
xdr_u_int (XDR * xdrs,
u_int * up)
{
#if UINT_MAX < ULONG_MAX
u_long l;
switch (xdrs->x_op)
{
case XDR_ENCODE:
l = (u_long) * up;
return (XDR_PUTLONG (xdrs, (long *) &l));
case XDR_DECODE:
if (!XDR_GETLONG (xdrs, (long *) &l))
{
return FALSE;
}
*up = (u_int) (u_long) l;
return TRUE;
case XDR_FREE:
return TRUE;
}
return FALSE;
#elif UINT_MAX == ULONG_MAX
return xdr_u_long (xdrs, (u_long *) up);
#else
# error Unexpected integer sizes in xdr_int()
#endif
}
/*
* XDR long integers
*/
bool_t
xdr_long (XDR * xdrs,
long * lp)
{
if ((xdrs->x_op == XDR_ENCODE)
&& ((sizeof (int32_t) == sizeof (long)) || ((int32_t) *lp == *lp)))
return XDR_PUTLONG (xdrs, lp);
if (xdrs->x_op == XDR_DECODE)
return XDR_GETLONG (xdrs, lp);
if (xdrs->x_op == XDR_FREE)
return TRUE;
return FALSE;
}
/*
* XDR unsigned long integers
*/
bool_t
xdr_u_long (XDR * xdrs,
u_long * ulp)
{
switch (xdrs->x_op)
{
case XDR_ENCODE:
if ((sizeof (uint32_t) != sizeof (u_long)) && ((uint32_t) *ulp != *ulp))
return FALSE;
return (XDR_PUTLONG (xdrs, (long *) ulp));
case XDR_DECODE:
{
long int tmp;
if (XDR_GETLONG (xdrs, &tmp) == FALSE)
return FALSE;
*ulp = (u_long) (uint32_t) tmp;
return TRUE;
}
case XDR_FREE:
return TRUE;
}
return FALSE;
}
/*
* XDR 32-bit integers
*/
bool_t
xdr_int32_t (XDR * xdrs,
int32_t * int32_p)
{
switch (xdrs->x_op)
{
case XDR_ENCODE:
return XDR_PUTINT32 (xdrs, int32_p);
case XDR_DECODE:
return XDR_GETINT32(xdrs, int32_p);
case XDR_FREE:
return TRUE;
}
return FALSE;
}
/*
* XDR unsigned 32-bit integers
*/
bool_t
xdr_u_int32_t (XDR * xdrs,
u_int32_t * u_int32_p)
{
switch (xdrs->x_op)
{
case XDR_ENCODE:
return XDR_PUTINT32 (xdrs, (int32_t *)u_int32_p);
case XDR_DECODE:
return XDR_GETINT32 (xdrs, (int32_t *)u_int32_p);
case XDR_FREE:
return TRUE;
}
return FALSE;
}
/*
* XDR unsigned 32-bit integers
*/
bool_t
xdr_uint32_t (XDR * xdrs,
uint32_t * uint32_p)
{
switch (xdrs->x_op)
{
case XDR_ENCODE:
return XDR_PUTINT32 (xdrs, (int32_t *)uint32_p);
case XDR_DECODE:
return XDR_GETINT32 (xdrs, (int32_t *)uint32_p);
case XDR_FREE:
return TRUE;
}
return FALSE;
}
/*
* XDR short integers
*/
bool_t
xdr_short (XDR * xdrs,
short * sp)
{
long l;
switch (xdrs->x_op)
{
case XDR_ENCODE:
l = (long) *sp;
return (XDR_PUTLONG (xdrs, &l));
case XDR_DECODE:
if (!XDR_GETLONG (xdrs, &l))
return FALSE;
*sp = (short) l;
return TRUE;
case XDR_FREE:
return TRUE;
}
return FALSE;
}
/*
* XDR unsigned short integers
*/
bool_t
xdr_u_short (XDR * xdrs,
u_short * usp)
{
long l;
switch (xdrs->x_op)
{
case XDR_ENCODE:
l = (u_long) * usp;
return XDR_PUTLONG (xdrs, &l);
case XDR_DECODE:
if (!XDR_GETLONG (xdrs, &l))
return FALSE;
*usp = (u_short) (u_long) l;
return TRUE;
case XDR_FREE:
return TRUE;
}
return FALSE;
}
/*
* XDR 16-bit integers
*/
bool_t
xdr_int16_t (XDR * xdrs,
int16_t * int16_p)
{
int32_t t;
switch (xdrs->x_op)
{
case XDR_ENCODE:
t = (int32_t) *int16_p;
return XDR_PUTINT32 (xdrs, &t);
case XDR_DECODE:
if (!XDR_GETINT32 (xdrs, &t))
return FALSE;
*int16_p = (int16_t) t;
return TRUE;
case XDR_FREE:
return TRUE;
}
return FALSE;
}
/*
* XDR unsigned 16-bit integers
*/
bool_t
xdr_u_int16_t (XDR * xdrs,
u_int16_t * u_int16_p)
{
uint32_t ut;
switch (xdrs->x_op)
{
case XDR_ENCODE:
ut = (uint32_t) *u_int16_p;
return XDR_PUTINT32 (xdrs, (int32_t *)&ut);
case XDR_DECODE:
if (!XDR_GETINT32 (xdrs, (int32_t *)&ut))
return FALSE;
*u_int16_p = (u_int16_t) ut;
return TRUE;
case XDR_FREE:
return TRUE;
}
return FALSE;
}
/*
* XDR unsigned 16-bit integers
*/
bool_t
xdr_uint16_t (XDR * xdrs,
uint16_t * uint16_p)
{
uint32_t ut;
switch (xdrs->x_op)
{
case XDR_ENCODE:
ut = (uint32_t) *uint16_p;
return XDR_PUTINT32 (xdrs, (int32_t *)&ut);
case XDR_DECODE:
if (!XDR_GETINT32 (xdrs, (int32_t *)&ut))
return FALSE;
*uint16_p = (uint16_t) ut;
return TRUE;
case XDR_FREE:
return TRUE;
}
return FALSE;
}
/*
* XDR 8-bit integers
*/
bool_t
xdr_int8_t (XDR * xdrs,
int8_t * int8_p)
{
int32_t t;
switch (xdrs->x_op)
{
case XDR_ENCODE:
t = (int32_t) *int8_p;
return XDR_PUTINT32 (xdrs, &t);
case XDR_DECODE:
if (!XDR_GETINT32 (xdrs, &t))
return FALSE;
*int8_p = (int8_t) t;
return TRUE;
case XDR_FREE:
return TRUE;
}
return FALSE;
}
/*
* XDR unsigned 8-bit integers
*/
bool_t
xdr_u_int8_t (XDR * xdrs,
u_int8_t * u_int8_p)
{
uint32_t ut;
switch (xdrs->x_op)
{
case XDR_ENCODE:
ut = (uint32_t) *u_int8_p;
return XDR_PUTINT32 (xdrs, (int32_t *)&ut);
case XDR_DECODE:
if (!XDR_GETINT32 (xdrs, (int32_t *)&ut))
return FALSE;
*u_int8_p = (u_int8_t) ut;
return TRUE;
case XDR_FREE:
return TRUE;
}
return FALSE;
}
/*
* XDR unsigned 8-bit integers
*/
bool_t
xdr_uint8_t (XDR * xdrs,
uint8_t * uint8_p)
{
uint32_t ut;
switch (xdrs->x_op)
{
case XDR_ENCODE:
ut = (uint32_t) *uint8_p;
return XDR_PUTINT32 (xdrs, (int32_t *)&ut);
case XDR_DECODE:
if (!XDR_GETINT32 (xdrs, (int32_t *)&ut))
return FALSE;
*uint8_p = (uint8_t) ut;
return TRUE;
case XDR_FREE:
return TRUE;
}
return FALSE;
}
/*
* XDR a char
*/
bool_t
xdr_char (XDR * xdrs,
char * cp)
{
int i;
i = (*cp);
if (!xdr_int (xdrs, &i))
return FALSE;
*cp = (char) i;
return TRUE;
}
/*
* XDR an unsigned char
*/
bool_t
xdr_u_char (XDR * xdrs,
u_char * ucp)
{
u_int u;
u = (*ucp);
if (!xdr_u_int (xdrs, &u))
return FALSE;
*ucp = (u_char) u;
return TRUE;
}
/*
* XDR booleans
*/
bool_t
xdr_bool (XDR * xdrs,
bool_t * bp)
{
long lb;
switch (xdrs->x_op)
{
case XDR_ENCODE:
lb = *bp ? XDR_TRUE : XDR_FALSE;
return XDR_PUTLONG (xdrs, &lb);
case XDR_DECODE:
if (!XDR_GETLONG (xdrs, &lb))
return FALSE;
*bp = (lb == XDR_FALSE) ? FALSE : TRUE;
return TRUE;
case XDR_FREE:
return TRUE;
}
return FALSE;
}
/*
* XDR enumerations
*/
bool_t
xdr_enum (XDR * xdrs,
enum_t * ep)
{
enum sizecheck
{ SIZEVAL }; /* used to find the size of an enum */
/*
* enums are treated as ints
*/
/* LINTED */ if (sizeof (enum sizecheck) == 4)
{
#if INT_MAX < LONG_MAX
long l;
switch (xdrs->x_op)
{
case XDR_ENCODE:
l = (long) *ep;
return XDR_PUTLONG (xdrs, &l);
case XDR_DECODE:
if (!XDR_GETLONG (xdrs, &l))
return FALSE;
*ep = l;
case XDR_FREE:
return TRUE;
}
#else
return xdr_long (xdrs, (long *) (void *) ep);
#endif
}
else /* LINTED */ if (sizeof (enum sizecheck) == sizeof (short))
{
return (xdr_short (xdrs, (short *) (void *) ep));
}
return FALSE;
}
/*
* XDR opaque data
* Allows the specification of a fixed size sequence of opaque bytes.
* cp points to the opaque object and cnt gives the byte length.
*/
bool_t
xdr_opaque (XDR * xdrs,
caddr_t cp,
u_int cnt)
{
u_int rndup;
static char crud[BYTES_PER_XDR_UNIT];
/*
* if no data we are done
*/
if (cnt == 0)
return TRUE;
/*
* round byte count to full xdr units
*/
rndup = cnt % BYTES_PER_XDR_UNIT;
if (rndup > 0)
rndup = BYTES_PER_XDR_UNIT - rndup;
switch (xdrs->x_op)
{
case XDR_DECODE:
if (!XDR_GETBYTES (xdrs, cp, cnt))
return FALSE;
if (rndup == 0)
return TRUE;
return XDR_GETBYTES (xdrs, (caddr_t) crud, rndup);
case XDR_ENCODE:
if (!XDR_PUTBYTES (xdrs, cp, cnt))
return FALSE;
if (rndup == 0)
return TRUE;
return (XDR_PUTBYTES (xdrs, xdr_zero, rndup));
case XDR_FREE:
return TRUE;
}
return FALSE;
}
/*
* XDR counted bytes
* *cpp is a pointer to the bytes, *sizep is the count.
* If *cpp is NULL maxsize bytes are allocated
*/
bool_t
xdr_bytes (XDR * xdrs,
char ** cpp,
u_int * sizep,
u_int maxsize)
{
char *sp = *cpp; /* sp is the actual string pointer */
u_int nodesize;
/*
* first deal with the length since xdr bytes are counted
*/
if (!xdr_u_int (xdrs, sizep))
return FALSE;
nodesize = *sizep;
if ((nodesize > maxsize) && (xdrs->x_op != XDR_FREE))
return FALSE;
/*
* now deal with the actual bytes
*/
switch (xdrs->x_op)
{
case XDR_DECODE:
if (nodesize == 0)
return TRUE;
if (sp == NULL)
*cpp = sp = mem_alloc (nodesize);
if (sp == NULL)
{
xdr_warnx ("xdr_bytes: out of memory");
errno = ENOMEM;
return FALSE;
}
/* FALLTHROUGH */
case XDR_ENCODE:
return xdr_opaque (xdrs, sp, nodesize);
case XDR_FREE:
if (sp != NULL)
{
mem_free (sp, nodesize);
*cpp = NULL;
}
return TRUE;
}
return FALSE;
}
/*
* Implemented here due to commonality of the object.
*/
bool_t
xdr_netobj (XDR * xdrs,
struct netobj * np)
{
return (xdr_bytes (xdrs, &np->n_bytes, &np->n_len, MAX_NETOBJ_SZ));
}
/*
* XDR a descriminated union
* Support routine for discriminated unions.
* You create an array of xdrdiscrim structures, terminated with
* an entry with a null procedure pointer. The routine gets
* the discriminant value and then searches the array of xdrdiscrims
* looking for that value. It calls the procedure given in the xdrdiscrim
* to handle the discriminant. If there is no specific routine a default
* routine may be called.
* If there is no specific or default routine an error is returned.
* dscmp: enum to decide which arm to work on
* unp: ptr to the union itself
* choices: ptr to array of [value, xdr proc] for each arm
* dfault: default xdr routine
*/
bool_t
xdr_union (XDR * xdrs,
enum_t * dscmp,
char * unp,
const struct xdr_discrim * choices,
xdrproc_t dfault)
{
enum_t dscm;
/*
* we deal with the discriminator; it's an enum
*/
if (!xdr_enum (xdrs, dscmp))
return FALSE;
dscm = *dscmp;
/*
* search choices for a value that matches the discriminator.
* if we find one, execute the xdr routine for that value.
*/
for (; choices->proc != NULL_xdrproc_t; choices++)
{
if (choices->value == dscm)
return ((*(choices->proc)) (xdrs, unp, LASTUNSIGNED));
}
/*
* no match - execute the default xdr routine if there is one
*/
return ((dfault == NULL_xdrproc_t) ? FALSE : (*dfault) (xdrs, unp, LASTUNSIGNED));
}
/*
* Non-portable xdr primitives.
* Care should be taken when moving these routines to new architectures.
*/
/*
* XDR null terminated ASCII strings
* xdr_string deals with "C strings" - arrays of bytes that are
* terminated by a NULL character. The parameter cpp references a
* pointer to storage; If the pointer is null, then the necessary
* storage is allocated. The last parameter is the max allowed length
* of the string as specified by a protocol.
*/
bool_t
xdr_string (XDR * xdrs,
char ** cpp,
u_int maxsize)
{
char *sp = *cpp; /* sp is the actual string pointer */
u_int size;
u_int nodesize;
/*
* first deal with the length since xdr strings are counted-strings
*/
switch (xdrs->x_op)
{
case XDR_FREE:
if (sp == NULL)
return TRUE; /* already free */
/* FALLTHROUGH */
case XDR_ENCODE:
if (sp == NULL)
return FALSE;
size = strlen (sp);
break;
case XDR_DECODE:
break;
}
if (!xdr_u_int (xdrs, &size))
return FALSE;
if (size > maxsize)
return FALSE;
nodesize = size + 1;
if (nodesize == 0)
{
/* This means an overflow. It a bug in the caller which
* provided a too large maxsize but nevertheless catch it
* here.
*/
return FALSE;
}
/*
* now deal with the actual bytes
*/
switch (xdrs->x_op)
{
case XDR_DECODE:
if (sp == NULL)
*cpp = sp = mem_alloc (nodesize);
if (sp == NULL)
{
xdr_warnx ("xdr_string: out of memory");
errno = ENOMEM;
return FALSE;
}
sp[size] = 0;
/* FALLTHROUGH */
case XDR_ENCODE:
return xdr_opaque (xdrs, sp, size);
case XDR_FREE:
mem_free (sp, nodesize);
*cpp = NULL;
return TRUE;
}
return FALSE;
}
/*
* Wrapper for xdr_string that can be called directly from
* routines like clnt_call
*/
bool_t
xdr_wrapstring (XDR * xdrs,
char ** cpp)
{
return xdr_string (xdrs, cpp, LASTUNSIGNED);
}
#if defined(___int64_t_defined)
/*
* NOTE: xdr_hyper(), xdr_u_hyper(), xdr_longlong_t(), and xdr_u_longlong_t()
* are in the "non-portable" section because they require that a `long long'
* be a 64-bit type.
*
* --thorpej@netbsd.org, November 30, 1999
*/
/*
* XDR 64-bit integers
*/
bool_t
xdr_int64_t (XDR * xdrs,
int64_t * llp)
{
int32_t t1, t2;
switch (xdrs->x_op)
{
case XDR_ENCODE:
t1 = (int32_t) ((*llp) >> 32);
t2 = (int32_t) (*llp);
return (XDR_PUTINT32 (xdrs, &t1) && XDR_PUTINT32 (xdrs, &t2));
case XDR_DECODE:
if (!XDR_GETINT32 (xdrs, &t1) || !XDR_GETINT32 (xdrs, &t2))
return FALSE;
*llp = ((int64_t) t1) << 32;
*llp |= (uint32_t) t2;
return TRUE;
case XDR_FREE:
return TRUE;
}
return FALSE;
}
/*
* XDR unsigned 64-bit integers
*/
bool_t
xdr_u_int64_t (XDR * xdrs,
u_int64_t * ullp)
{
uint32_t t1, t2;
switch (xdrs->x_op)
{
case XDR_ENCODE:
t1 = (uint32_t) ((*ullp) >> 32);
t2 = (uint32_t) (*ullp);
return (XDR_PUTINT32 (xdrs, (int32_t *)&t1) &&
XDR_PUTINT32 (xdrs, (int32_t *)&t2));
case XDR_DECODE:
if (!XDR_GETINT32 (xdrs, (int32_t *)&t1) ||
!XDR_GETINT32 (xdrs, (int32_t *)&t2))
return FALSE;
*ullp = ((u_int64_t) t1) << 32;
*ullp |= t2;
return TRUE;
case XDR_FREE:
return TRUE;
}
return FALSE;
}
/*
* XDR unsigned 64-bit integers
*/
bool_t
xdr_uint64_t (XDR * xdrs,
uint64_t * ullp)
{
uint32_t t1, t2;
switch (xdrs->x_op)
{
case XDR_ENCODE:
t1 = (uint32_t) ((*ullp) >> 32);
t2 = (uint32_t) (*ullp);
return (XDR_PUTINT32 (xdrs, (int32_t *)&t1) &&
XDR_PUTINT32 (xdrs, (int32_t *)&t2));
case XDR_DECODE:
if (!XDR_GETINT32 (xdrs, (int32_t *)&t1) ||
!XDR_GETINT32 (xdrs, (int32_t *)&t2))
return FALSE;
*ullp = ((uint64_t) t1) << 32;
*ullp |= t2;
return TRUE;
case XDR_FREE:
return TRUE;
}
return FALSE;
}
/*
* XDR hypers
*/
bool_t
xdr_hyper (XDR * xdrs,
quad_t * llp)
{
/*
* Don't bother open-coding this; it's a fair amount of code. Just
* call xdr_int64_t().
*/
return (xdr_int64_t (xdrs, (int64_t *) llp));
}
/*
* XDR unsigned hypers
*/
bool_t
xdr_u_hyper (XDR * xdrs,
u_quad_t * ullp)
{
/*
* Don't bother open-coding this; it's a fair amount of code. Just
* call xdr_uint64_t().
*/
return (xdr_uint64_t (xdrs, (uint64_t *) ullp));
}
/*
* XDR longlong_t's
*/
bool_t
xdr_longlong_t (XDR * xdrs,
quad_t * llp)
{
/*
* Don't bother open-coding this; it's a fair amount of code. Just
* call xdr_int64_t().
*/
return (xdr_int64_t (xdrs, (int64_t *) llp));
}
/*
* XDR u_longlong_t's
*/
bool_t
xdr_u_longlong_t (XDR * xdrs,
u_quad_t *ullp)
{
/*
* Don't bother open-coding this; it's a fair amount of code. Just
* call xdr_u_int64_t().
*/
return (xdr_uint64_t (xdrs, (uint64_t *) ullp));
}
#endif /* ___int64_t_defined */