4
0
mirror of git://sourceware.org/git/newlib-cygwin.git synced 2025-01-27 17:40:37 +08:00
2011-06-06 05:02:13 +00:00

222 lines
7.4 KiB
C++

/* heap.cc: Cygwin heap manager.
Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011 Red Hat, Inc.
This file is part of Cygwin.
This software is a copyrighted work licensed under the terms of the
Cygwin license. Please consult the file "CYGWIN_LICENSE" for
details. */
#include "winsup.h"
#include "cygerrno.h"
#include "shared_info.h"
#include "path.h"
#include "fhandler.h"
#include "dtable.h"
#include "cygheap.h"
#include "child_info.h"
#include <sys/param.h>
#define assert(x)
static unsigned page_const;
#define MINHEAP_SIZE (4 * 1024 * 1024)
/* Initialize the heap at process start up. */
void
heap_init ()
{
const DWORD alloctype = MEM_RESERVE;
/* If we're the forkee, we must allocate the heap at exactly the same place
as our parent. If not, we (almost) don't care where it ends up. */
page_const = wincap.page_size ();
if (!cygheap->user_heap.base)
{
/* Starting with Vista, Windows performs heap ASLR. This spoils
the entire region below 0x20000000 for us, because that region
is used by Windows to randomize heap and stack addresses.
Therefore we put our heap into a safe region starting at 0x20000000.
This should work right from the start in 99% of the cases. But,
there's always a but. Read on... */
uintptr_t start_address = 0x20000000L;
uintptr_t largest_found = 0;
size_t largest_found_size = 0;
SIZE_T ret;
MEMORY_BASIC_INFORMATION mbi;
cygheap->user_heap.chunk = cygwin_shared->heap_chunk_size ();
do
{
cygheap->user_heap.base = VirtualAlloc ((LPVOID) start_address,
cygheap->user_heap.chunk,
alloctype, PAGE_NOACCESS);
if (cygheap->user_heap.base)
break;
/* Ok, so we are at the 1% which didn't work with 0x20000000 out
of the box. What we do now is to search for the next free
region which matches our desired heap size. While doing that,
we keep track of the largest region we found. */
start_address += wincap.allocation_granularity ();
while ((ret = VirtualQuery ((LPCVOID) start_address, &mbi,
sizeof mbi)) != 0)
{
if (mbi.State == MEM_FREE)
{
if (mbi.RegionSize >= cygheap->user_heap.chunk)
break;
if (mbi.RegionSize > largest_found_size)
{
largest_found = (uintptr_t) mbi.BaseAddress;
largest_found_size = mbi.RegionSize;
}
}
/* Since VirtualAlloc only reserves at allocation granularity
boundaries, we round up here, too. Otherwise we might end
up at a bogus page-aligned address. */
start_address = roundup2 (start_address + mbi.RegionSize,
wincap.allocation_granularity ());
}
if (!ret)
{
/* In theory this should not happen. But if it happens, we have
collected the information about the largest available region
in the above loop. So, next we squeeze the heap into that
region, unless it's smaller than the minimum size. */
if (largest_found_size >= MINHEAP_SIZE)
{
cygheap->user_heap.chunk = largest_found_size;
cygheap->user_heap.base =
VirtualAlloc ((LPVOID) start_address,
cygheap->user_heap.chunk,
alloctype, PAGE_NOACCESS);
}
/* Last resort (but actually we are probably broken anyway):
Use the minimal heap size and let the system decide. */
if (!cygheap->user_heap.base)
{
cygheap->user_heap.chunk = MINHEAP_SIZE;
cygheap->user_heap.base =
VirtualAlloc (NULL, cygheap->user_heap.chunk,
alloctype, PAGE_NOACCESS);
}
}
}
while (!cygheap->user_heap.base && ret);
if (cygheap->user_heap.base == NULL)
api_fatal ("unable to allocate heap, heap_chunk_size %p, %E",
cygheap->user_heap.chunk);
cygheap->user_heap.ptr = cygheap->user_heap.top = cygheap->user_heap.base;
cygheap->user_heap.max = (char *) cygheap->user_heap.base
+ cygheap->user_heap.chunk;
}
else
{
DWORD chunk = cygheap->user_heap.chunk; /* allocation chunk */
/* total size commited in parent */
DWORD allocsize = (char *) cygheap->user_heap.top -
(char *) cygheap->user_heap.base;
/* Loop until we've managed to reserve an adequate amount of memory. */
char *p;
DWORD reserve_size = chunk * ((allocsize + (chunk - 1)) / chunk);
while (1)
{
p = (char *) VirtualAlloc (cygheap->user_heap.base, reserve_size,
alloctype, PAGE_READWRITE);
if (p)
break;
if ((reserve_size -= page_const) < allocsize)
break;
}
if (!p && in_forkee && !fork_info->abort (NULL))
api_fatal ("couldn't allocate heap, %E, base %p, top %p, "
"reserve_size %d, allocsize %d, page_const %d",
cygheap->user_heap.base, cygheap->user_heap.top,
reserve_size, allocsize, page_const);
if (p != cygheap->user_heap.base)
api_fatal ("heap allocated at wrong address %p (mapped) != %p (expected)", p, cygheap->user_heap.base);
if (allocsize && !VirtualAlloc (cygheap->user_heap.base, allocsize, MEM_COMMIT, PAGE_READWRITE))
api_fatal ("MEM_COMMIT failed, %E");
}
debug_printf ("heap base %p, heap top %p", cygheap->user_heap.base,
cygheap->user_heap.top);
page_const--;
// malloc_init ();
}
#define pround(n) (((size_t)(n) + page_const) & ~page_const)
/* FIXME: This function no longer handles "split heaps". */
extern "C" void *
sbrk (int n)
{
char *newtop, *newbrk;
unsigned commitbytes, newbrksize;
if (n == 0)
return cygheap->user_heap.ptr; /* Just wanted to find current cygheap->user_heap.ptr address */
newbrk = (char *) cygheap->user_heap.ptr + n; /* Where new cygheap->user_heap.ptr will be */
newtop = (char *) pround (newbrk); /* Actual top of allocated memory -
on page boundary */
if (newtop == cygheap->user_heap.top)
goto good;
if (n < 0)
{ /* Freeing memory */
assert (newtop < cygheap->user_heap.top);
n = (char *) cygheap->user_heap.top - newtop;
if (VirtualFree (newtop, n, MEM_DECOMMIT)) /* Give it back to OS */
goto good; /* Didn't take */
else
goto err;
}
assert (newtop > cygheap->user_heap.top);
/* Find the number of bytes to commit, rounded up to the nearest page. */
commitbytes = pround (newtop - (char *) cygheap->user_heap.top);
/* Need to grab more pages from the OS. If this fails it may be because
we have used up previously reserved memory. Or, we're just plumb out
of memory. Only attempt to commit memory that we know we've previously
reserved. */
if (newtop <= cygheap->user_heap.max)
{
if (VirtualAlloc (cygheap->user_heap.top, commitbytes, MEM_COMMIT, PAGE_READWRITE) != NULL)
goto good;
}
/* Couldn't allocate memory. Maybe we can reserve some more.
Reserve either the maximum of the standard cygwin_shared->heap_chunk_size ()
or the requested amount. Then attempt to actually allocate it. */
if ((newbrksize = cygheap->user_heap.chunk) < commitbytes)
newbrksize = commitbytes;
if ((VirtualAlloc (cygheap->user_heap.top, newbrksize, MEM_RESERVE, PAGE_NOACCESS)
|| VirtualAlloc (cygheap->user_heap.top, newbrksize = commitbytes, MEM_RESERVE, PAGE_NOACCESS))
&& VirtualAlloc (cygheap->user_heap.top, commitbytes, MEM_COMMIT, PAGE_READWRITE) != NULL)
{
cygheap->user_heap.max = (char *) cygheap->user_heap.max + pround (newbrksize);
goto good;
}
err:
set_errno (ENOMEM);
return (void *) -1;
good:
void *oldbrk = cygheap->user_heap.ptr;
cygheap->user_heap.ptr = newbrk;
cygheap->user_heap.top = newtop;
return oldbrk;
}