/* * Copyright 2023 Siemens * * The authors hereby grant permission to use, copy, modify, distribute, * and license this software and its documentation for any purpose, provided * that existing copyright notices are retained in all copies and that this * notice is included verbatim in any distributions. No written agreement, * license, or royalty fee is required for any of the authorized uses. * Modifications to this software may be copyrighted by their authors * and need not follow the licensing terms described here, provided that * the new terms are clearly indicated on the first page of each file where * they apply. */ /* * Copyright (c) 1994-2009 Red Hat, Inc. All rights reserved. * * This copyrighted material is made available to anyone wishing to use, * modify, copy, or redistribute it subject to the terms and conditions * of the BSD License. This program is distributed in the hope that * it will be useful, but WITHOUT ANY WARRANTY expressed or implied, * including the implied warranties of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. A copy of this license is available at * http://www.opensource.org/licenses. Any Red Hat trademarks that are * incorporated in the source code or documentation are not subject to * the BSD License and may only be used or replicated with the express * permission of Red Hat, Inc. */ /****************************************************************** * The following routines are coded directly from the algorithms * and coefficients given in "Software Manual for the Elementary * Functions" by William J. Cody, Jr. and William Waite, Prentice * Hall, 1980. ******************************************************************/ /* Based in newlib/libm/mathfp/sf_sineh.c in Newlib. */ #include "amdgcnmach.h" v64sf v64sf_expf_aux (v64sf, v64si); v64si v64sf_numtestf (v64sf); v64si v64sf_isposf (v64sf); static const float q[] = { -0.428277109e+2 }; static const float p[] = { -0.713793159e+1, -0.190333399 }; static const float LNV = 0.6931610107; static const float INV_V2 = 0.2499930850; static const float V_OVER2_MINUS1 = 0.1383027787e-4; #if defined (__has_builtin) && __has_builtin (__builtin_gcn_fabsvf) DEF_VS_MATH_FUNC (v64sf, sinehf, v64sf x, int cosineh) { const float WBAR = 18.55; FUNCTION_INIT (v64sf); v64si sgn = VECTOR_INIT (0); v64si v_cosineh = VECTOR_INIT (cosineh ? -1 : 0); /* Check for special values. */ v64si num_type = v64sf_numtestf (x); VECTOR_IF (num_type == NAN, cond) errno = EDOM; VECTOR_RETURN (x, cond); VECTOR_ELSEIF (num_type == INF, cond) errno = ERANGE; VECTOR_RETURN (VECTOR_MERGE (VECTOR_INIT (z_infinity_f.f), VECTOR_INIT (-z_infinity_f.f), v64sf_isposf (x)), cond); VECTOR_ENDIF v64sf y = __builtin_gcn_fabsvf (x); if (!cosineh) VECTOR_COND_MOVE (sgn, VECTOR_INIT (-1), x < 0.0f); v64sf res; VECTOR_IF (((y > 1.0f) & ~v_cosineh) | v_cosineh, cond) VECTOR_IF2 (y > (float) BIGX, cond2, cond) v64sf w = y - LNV; /* Check for w > maximum here. */ VECTOR_IF2 (w > (float) BIGX, cond3, cond2) errno = ERANGE; VECTOR_RETURN (x, cond3); VECTOR_ENDIF v64sf z = v64sf_expf_aux (w, __mask); VECTOR_COND_MOVE (res, z * (V_OVER2_MINUS1 + 1.0f), cond2 & (w > WBAR)); VECTOR_ELSE2 (cond2, cond) v64sf z = v64sf_expf_aux (y, __mask); if (cosineh) { VECTOR_COND_MOVE (res, (z + 1 / z) * 0.5f, cond2); } else { VECTOR_COND_MOVE (res, (z - 1 / z) * 0.5f, cond2); } VECTOR_ENDIF VECTOR_COND_MOVE (res, -res, sgn); VECTOR_ELSE (cond) /* Check for y being too small. */ VECTOR_IF2 (y < z_rooteps_f, cond2, cond); VECTOR_COND_MOVE (res, x, cond2); VECTOR_ELSE2 (cond2, cond) /* Calculate the Taylor series. */ v64sf f = x * x; v64sf Q = f + q[0]; v64sf P = p[1] * f + p[0]; v64sf R = f * (P / Q); VECTOR_COND_MOVE (res, x + x * R, cond2); VECTOR_ENDIF VECTOR_ENDIF VECTOR_RETURN (res, NO_COND); FUNCTION_RETURN; } #endif