/* * Copyright 2023 Siemens * * The authors hereby grant permission to use, copy, modify, distribute, * and license this software and its documentation for any purpose, provided * that existing copyright notices are retained in all copies and that this * notice is included verbatim in any distributions. No written agreement, * license, or royalty fee is required for any of the authorized uses. * Modifications to this software may be copyrighted by their authors * and need not follow the licensing terms described here, provided that * the new terms are clearly indicated on the first page of each file where * they apply. */ /* * Copyright (c) 1994-2009 Red Hat, Inc. All rights reserved. * * This copyrighted material is made available to anyone wishing to use, * modify, copy, or redistribute it subject to the terms and conditions * of the BSD License. This program is distributed in the hope that * it will be useful, but WITHOUT ANY WARRANTY expressed or implied, * including the implied warranties of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. A copy of this license is available at * http://www.opensource.org/licenses. Any Red Hat trademarks that are * incorporated in the source code or documentation are not subject to * the BSD License and may only be used or replicated with the express * permission of Red Hat, Inc. */ /****************************************************************** * The following routines are coded directly from the algorithms * and coefficients given in "Software Manual for the Elementary * Functions" by William J. Cody, Jr. and William Waite, Prentice * Hall, 1980. ******************************************************************/ /* Based on newlib/libm/mathfp/sf_sine.c in Newlib. */ #include "amdgcnmach.h" v64si v64sf_numtestf (v64sf); static const float HALF_PI = 1.570796326; static const float ONE_OVER_PI = 0.318309886; static const float r[] = { -0.1666665668, 0.8333025139e-02, -0.1980741872e-03, 0.2601903036e-5 }; #if defined (__has_builtin) && __has_builtin (__builtin_gcn_fabsvf) DEF_VS_MATH_FUNC (v64sf, sinef, v64sf x, int cosine) { const float YMAX = 210828714.0; FUNCTION_INIT (v64sf); v64si num_type = v64sf_numtestf (x); VECTOR_IF (num_type == NAN, cond) errno = EDOM; VECTOR_RETURN (x, cond); VECTOR_ELSEIF (num_type == INF, cond) errno = EDOM; VECTOR_RETURN (VECTOR_INIT (z_notanum_f.f), cond); VECTOR_ENDIF /* Use sin and cos properties to ease computations. */ v64si sgn; v64sf y; if (cosine) { sgn = VECTOR_INIT (0); y = __builtin_gcn_fabsvf (x) + HALF_PI; } else { sgn = x < 0.0f; y = VECTOR_MERGE (-x, x, x < 0.0f); } /* Check for values of y that will overflow here. */ VECTOR_IF (y > YMAX, cond) errno = ERANGE; VECTOR_RETURN (x, cond); VECTOR_ENDIF /* Calculate the exponent. */ v64si Nneg = __builtin_convertvector (y * ONE_OVER_PI - 0.5f, v64si); v64si Npos = __builtin_convertvector (y * ONE_OVER_PI + 0.5f, v64si); v64si N = VECTOR_MERGE (Nneg, Npos, y < 0.0f); v64sf XN = __builtin_convertvector (N, v64sf); VECTOR_COND_MOVE (sgn, ~sgn, (N & 1) != 0); if (cosine) XN -= 0.5; y = __builtin_gcn_fabsvf (x) - XN * (float) __PI; v64sf res; VECTOR_IF ((-z_rooteps_f < y) & (y < z_rooteps_f), cond) VECTOR_COND_MOVE (res, y, cond); VECTOR_ELSE (cond) v64sf g = y * y; /* Calculate the Taylor series. */ v64sf R = (((r[3] * g + r[2]) * g + r[1]) * g + r[0]) * g; /* Finally, compute the result. */ VECTOR_COND_MOVE (res, y + y * R, cond); VECTOR_ENDIF VECTOR_COND_MOVE (res, -res, sgn); VECTOR_RETURN (res, NO_COND); FUNCTION_RETURN; } #endif