/* * Copyright 2023 Siemens * * The authors hereby grant permission to use, copy, modify, distribute, * and license this software and its documentation for any purpose, provided * that existing copyright notices are retained in all copies and that this * notice is included verbatim in any distributions. No written agreement, * license, or royalty fee is required for any of the authorized uses. * Modifications to this software may be copyrighted by their authors * and need not follow the licensing terms described here, provided that * the new terms are clearly indicated on the first page of each file where * they apply. */ /* * Copyright (c) 1994-2009 Red Hat, Inc. All rights reserved. * * This copyrighted material is made available to anyone wishing to use, * modify, copy, or redistribute it subject to the terms and conditions * of the BSD License. This program is distributed in the hope that * it will be useful, but WITHOUT ANY WARRANTY expressed or implied, * including the implied warranties of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. A copy of this license is available at * http://www.opensource.org/licenses. Any Red Hat trademarks that are * incorporated in the source code or documentation are not subject to * the BSD License and may only be used or replicated with the express * permission of Red Hat, Inc. */ /****************************************************************** * The following routines are coded directly from the algorithms * and coefficients given in "Software Manual for the Elementary * Functions" by William J. Cody, Jr. and William Waite, Prentice * Hall, 1980. ******************************************************************/ /* Based on newlib/libm/mathfp/sf_logarithm.c in Newlib. */ #include "amdgcnmach.h" v64si v64sf_finitef_aux (v64sf, v64si); v64si v64sf_isnanf_aux (v64sf, v64si); static const float a[] = { -0.64124943423745581147e+02, 0.16383943563021534222e+02, -0.78956112887481257267 }; static const float b[] = { -0.76949932108494879777e+03, 0.31203222091924532844e+03, -0.35667977739034646171e+02 }; static const float C1 = 0.693145752; static const float C2 = 1.428606820e-06; #if defined (__has_builtin) \ && __has_builtin (__builtin_gcn_frexpvf_mant) \ && __has_builtin (__builtin_gcn_frexpvf_exp) DEF_VS_MATH_FUNC (v64sf, logf, v64sf x) { FUNCTION_INIT (v64sf); /* Check for domain/range errors here. */ VECTOR_IF (x == 0.0f, cond) errno = ERANGE; VECTOR_RETURN (VECTOR_INIT (-z_infinity_f.f), cond); VECTOR_ELSEIF (x < 0.0f, cond) errno = EDOM; VECTOR_RETURN (VECTOR_INIT (z_notanum_f.f), cond); VECTOR_ELSEIF (~v64sf_finitef_aux (x, __mask), cond) VECTOR_RETURN (VECTOR_MERGE (VECTOR_INIT (z_notanum_f.f), VECTOR_INIT (z_infinity_f.f), v64sf_isnanf_aux (x, __mask)), cond); VECTOR_ENDIF /* Get the exponent and mantissa where x = f * 2^N. */ v64sf f = __builtin_gcn_frexpvf_mant (x); v64si N = __builtin_gcn_frexpvf_exp (x); v64sf z = f - 0.5f; VECTOR_IF (f > (float) __SQRT_HALF, cond) VECTOR_COND_MOVE (z, (z - 0.5f) / (f * 0.5f + 0.5f), cond); VECTOR_ELSE (cond) VECTOR_COND_MOVE (N, N - 1, cond); VECTOR_COND_MOVE (z, z / (z * 0.5f + 0.5f), cond); VECTOR_ENDIF v64sf w = z * z; /* Use Newton's method with 4 terms. */ z += z * w * ((a[2] * w + a[1]) * w + a[0]) / (((w + b[2]) * w + b[1]) * w + b[0]); v64sf Nf = __builtin_convertvector(N, v64sf); VECTOR_COND_MOVE (z, (Nf * C2 + z) + Nf * C1, N != 0); VECTOR_RETURN (z, NO_COND); FUNCTION_RETURN; } DEF_VARIANTS (logf, sf, sf) DEF_VS_MATH_FUNC (v64sf, log1pf, v64sf x) { /* TODO: Implement algorithm with better precision. */ return v64sf_logf_aux (1 + x, __mask); } DEF_VARIANTS (log1pf, sf, sf) #endif