/* * Copyright 2023 Siemens * * The authors hereby grant permission to use, copy, modify, distribute, * and license this software and its documentation for any purpose, provided * that existing copyright notices are retained in all copies and that this * notice is included verbatim in any distributions. No written agreement, * license, or royalty fee is required for any of the authorized uses. * Modifications to this software may be copyrighted by their authors * and need not follow the licensing terms described here, provided that * the new terms are clearly indicated on the first page of each file where * they apply. */ /* * Copyright (c) 1994-2009 Red Hat, Inc. All rights reserved. * * This copyrighted material is made available to anyone wishing to use, * modify, copy, or redistribute it subject to the terms and conditions * of the BSD License. This program is distributed in the hope that * it will be useful, but WITHOUT ANY WARRANTY expressed or implied, * including the implied warranties of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. A copy of this license is available at * http://www.opensource.org/licenses. Any Red Hat trademarks that are * incorporated in the source code or documentation are not subject to * the BSD License and may only be used or replicated with the express * permission of Red Hat, Inc. */ /****************************************************************** * The following routines are coded directly from the algorithms * and coefficients given in "Software Manual for the Elementary * Functions" by William J. Cody, Jr. and William Waite, Prentice * Hall, 1980. ******************************************************************/ /* Based on newlib/libm/mathfp/s_logarithm.c in Newlib. */ #include "amdgcnmach.h" v64si v64df_finite (v64df); v64si v64df_isnan (v64df); static const double a[] = { -0.64124943423745581147e+02, 0.16383943563021534222e+02, -0.78956112887481257267 }; static const double b[] = { -0.76949932108494879777e+03, 0.31203222091924532844e+03, -0.35667977739034646171e+02 }; static const double C1 = 22713.0 / 32768.0; static const double C2 = 1.428606820309417232e-06; #if defined (__has_builtin) \ && __has_builtin (__builtin_gcn_frexpv_mant) \ && __has_builtin (__builtin_gcn_frexpv_exp) \ DEF_VD_MATH_FUNC (v64df, log, v64df x) { FUNCTION_INIT (v64df); /* Check for domain/range errors here. */ VECTOR_IF (x == 0.0, cond) errno = ERANGE; VECTOR_RETURN (VECTOR_INIT (-z_infinity.d), cond); VECTOR_ELSEIF (x < 0.0, cond) errno = EDOM; VECTOR_RETURN (VECTOR_INIT (z_notanum.d), cond); VECTOR_ELSEIF (__builtin_convertvector (~v64df_finite (x), v64di), cond) VECTOR_RETURN (VECTOR_MERGE (VECTOR_INIT (z_notanum.d), VECTOR_INIT (z_infinity.d), v64df_isnan (x)), cond); VECTOR_ENDIF /* Get the exponent and mantissa where x = f * 2^N. */ v64df f = __builtin_gcn_frexpv_mant (x); v64si N = __builtin_gcn_frexpv_exp (x); v64df z = f - 0.5; VECTOR_IF (f > __SQRT_HALF, cond) VECTOR_COND_MOVE (z, (z - 0.5) / (f * 0.5 + 0.5), cond); VECTOR_ELSE (cond) VECTOR_COND_MOVE (N, N - 1, cond); VECTOR_COND_MOVE (z, z / (z * 0.5 + 0.5), cond); VECTOR_ENDIF v64df w = z * z; /* Use Newton's method with 4 terms. */ z += z * w * ((a[2] * w + a[1]) * w + a[0]) / (((w + b[2]) * w + b[1]) * w + b[0]); v64df Nf = __builtin_convertvector (N, v64df); VECTOR_COND_MOVE (z, (Nf * C2 + z) + Nf * C1, N != 0); VECTOR_RETURN (z, NO_COND); FUNCTION_RETURN; } DEF_VARIANTS (log, df, df) DEF_VD_MATH_FUNC (v64df, log1p, v64df x) { /* TODO: Implement algorithm with better precision. */ return v64df_log_aux (1 + x, __mask); } DEF_VARIANTS (log1p, df, df) #endif