/* * Copyright 2023 Siemens * * The authors hereby grant permission to use, copy, modify, distribute, * and license this software and its documentation for any purpose, provided * that existing copyright notices are retained in all copies and that this * notice is included verbatim in any distributions. No written agreement, * license, or royalty fee is required for any of the authorized uses. * Modifications to this software may be copyrighted by their authors * and need not follow the licensing terms described here, provided that * the new terms are clearly indicated on the first page of each file where * they apply. */ /* * Copyright (c) 1994-2009 Red Hat, Inc. All rights reserved. * * This copyrighted material is made available to anyone wishing to use, * modify, copy, or redistribute it subject to the terms and conditions * of the BSD License. This program is distributed in the hope that * it will be useful, but WITHOUT ANY WARRANTY expressed or implied, * including the implied warranties of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. A copy of this license is available at * http://www.opensource.org/licenses. Any Red Hat trademarks that are * incorporated in the source code or documentation are not subject to * the BSD License and may only be used or replicated with the express * permission of Red Hat, Inc. */ /****************************************************************** * The following routines are coded directly from the algorithms * and coefficients given in "Software Manual for the Elementary * Functions" by William J. Cody, Jr. and William Waite, Prentice * Hall, 1980. ******************************************************************/ /* Based on newlib/libm/mathfp/s_atangent.c in Newlib. */ #include #include "amdgcnmach.h" #if defined (__has_builtin) \ && __has_builtin (__builtin_gcn_fabsv) \ && __has_builtin (__builtin_gcn_frexpv_exp) DEF_VD_MATH_FUNC (v64df, atangent, v64df x, v64df v, v64df u, int arctan2) { static const double ROOT3 = 1.73205080756887729353; static const double a[] = { 0.0, 0.52359877559829887308, 1.57079632679489661923, 1.04719755119659774615 }; static const double q[] = { 0.41066306682575781263e+2, 0.86157349597130242515e+2, 0.59578436142597344465e+2, 0.15024001160028576121e+2 }; static const double p[] = { -0.13688768894191926929e+2, -0.20505855195861651981e+2, -0.84946240351320683534e+1, -0.83758299368150059274 }; static const float z_rooteps = 7.4505859692e-9; FUNCTION_INIT (v64df); v64df zero = VECTOR_INIT (0.0); v64df pi = VECTOR_INIT (__PI); v64df pi_over_two = VECTOR_INIT (__PI_OVER_TWO); v64df res; v64si branch = VECTOR_INIT (0); /* Preparation for calculating arctan2. */ if (arctan2) { VECTOR_IF (u == 0.0, cond) VECTOR_IF2 (v == 0.0, cond2, cond) errno = ERANGE; VECTOR_RETURN (VECTOR_INIT (0.0), cond2); VECTOR_ELSE2 (cond2, cond) VECTOR_COND_MOVE (branch, VECTOR_INIT (-1), cond2); VECTOR_COND_MOVE (res, pi_over_two, cond2); VECTOR_ENDIF VECTOR_ENDIF VECTOR_IF (~branch, cond) /* Get the exponent values of the inputs. */ v64si expv = __builtin_gcn_frexpv_exp (v); v64si expu = __builtin_gcn_frexpv_exp (u); /* See if a divide will overflow. */ v64si e = expv - expu; VECTOR_IF2 (e > DBL_MAX_EXP, cond2, cond) VECTOR_COND_MOVE (branch, VECTOR_INIT (-1), cond2); VECTOR_COND_MOVE (res, pi_over_two, cond2); VECTOR_ENDIF /* Also check for underflow. */ VECTOR_IF2 (e < DBL_MIN_EXP, cond2, cond) VECTOR_COND_MOVE (branch, VECTOR_INIT (-1), cond2); VECTOR_COND_MOVE (res, zero, cond2); VECTOR_ENDIF VECTOR_ENDIF } VECTOR_IF (~branch, cond) v64df f; v64si N = VECTOR_INIT (0); if (arctan2) f = __builtin_gcn_fabsv (v / u); else f = __builtin_gcn_fabsv (x); VECTOR_IF2 (__builtin_convertvector(f > 1.0, v64si), cond2, cond) VECTOR_COND_MOVE (f, 1.0 / f, cond2); VECTOR_COND_MOVE (N, VECTOR_INIT (2), cond2); VECTOR_ENDIF VECTOR_IF2 (__builtin_convertvector(f > (2.0 - ROOT3), v64si), cond2, cond) double A = ROOT3 - 1.0; VECTOR_COND_MOVE (f, (((A * f - 0.5) - 0.5) + f) / (ROOT3 + f), cond2); N += cond2 & 1; VECTOR_ENDIF /* Check for values that are too small. */ VECTOR_IF2 (__builtin_convertvector((-z_rooteps < f) & (f < z_rooteps), v64si), cond2, cond) VECTOR_COND_MOVE (res, f, cond2); /* Calculate the Taylor series. */ VECTOR_ELSE2 (cond2, cond) v64df g = f * f; v64df P = (((p[3] * g + p[2]) * g + p[1]) * g + p[0]) * g; v64df Q = (((g + q[3]) * g + q[2]) * g + q[1]) * g + q[0]; v64df R = P / Q; VECTOR_COND_MOVE (res, f + f * R, cond2); VECTOR_ENDIF VECTOR_COND_MOVE (res, -res, cond & (N > 1)); res += VECTOR_MERGE (VECTOR_INIT (a[1]), zero, cond & (N == 1)); res += VECTOR_MERGE (VECTOR_INIT (a[2]), zero, cond & (N == 2)); res += VECTOR_MERGE (VECTOR_INIT (a[3]), zero, cond & (N == 3)); VECTOR_ENDIF if (arctan2) { /*if (u < 0.0)*/ VECTOR_COND_MOVE (res, pi - res, u < 0.0); /*if (v < 0.0)*/ VECTOR_COND_MOVE (res, -res, v < 0.0); } /*else if (x < 0.0) */ else VECTOR_COND_MOVE (res, -res, x < 0.0); VECTOR_RETURN (res, NO_COND); FUNCTION_RETURN; } #endif