/***************************************************************** * The following routines are coded directly from the algorithms * and coefficients given in "Software Manual for the Elementary * Functions" by William J. Cody, Jr. and William Waite, Prentice * Hall, 1980. *****************************************************************/ /* Based on newlib/libm/mathfp/s_sqrt.c in Newlib. */ #include "amdgcnmach.h" v64si v64df_numtest (v64df); v64si v64df_ispos (v64df); #if defined (__has_builtin) \ && __has_builtin (__builtin_gcn_frexpv_mant) \ && __has_builtin (__builtin_gcn_frexpv_exp) \ && __has_builtin (__builtin_gcn_ldexpv) DEF_VD_MATH_FUNC (v64df, sqrt, v64df x) { FUNCTION_INIT (v64df); /* Check for special values. */ v64si num_type = v64df_numtest (x); VECTOR_IF (num_type == NAN, cond) errno = EDOM; VECTOR_RETURN (x, cond); VECTOR_ELSEIF (num_type == INF, cond) VECTOR_IF2 (v64df_ispos (x), cond2, cond) errno = EDOM; VECTOR_RETURN (VECTOR_INIT (z_notanum.d), cond2); VECTOR_ELSE2 (cond2,cond) errno = ERANGE; VECTOR_RETURN (VECTOR_INIT (z_infinity.d), cond); VECTOR_ENDIF VECTOR_ENDIF /* Initial checks are performed here. */ VECTOR_IF (x == 0.0, cond) VECTOR_RETURN (VECTOR_INIT (0.0), cond); VECTOR_ENDIF VECTOR_IF (x < 0.0, cond) errno = EDOM; VECTOR_RETURN (VECTOR_INIT (z_notanum.d), cond); VECTOR_ENDIF /* Find the exponent and mantissa for the form x = f * 2^exp. */ v64df f = __builtin_gcn_frexpv_mant (x); v64si exp = __builtin_gcn_frexpv_exp (x); v64si odd = (exp & 1) != 0; /* Get the initial approximation. */ v64df y = 0.41731 + 0.59016 * f; f *= 0.5f; /* Calculate the remaining iterations. */ y = y * 0.5f + f / y; y = y * 0.5f + f / y; y = y * 0.5f + f / y; /* Calculate the final value. */ VECTOR_COND_MOVE (y, y * __SQRT_HALF, odd); VECTOR_COND_MOVE (exp, exp + 1, odd); exp >>= 1; y = __builtin_gcn_ldexpv (y, exp); VECTOR_RETURN (y, NO_COND); FUNCTION_RETURN; } DEF_VARIANTS (sqrt, df, df) #endif