/* -------------------------------------------------------------- */ /* (C)Copyright 2001,2008, */ /* International Business Machines Corporation, */ /* Sony Computer Entertainment, Incorporated, */ /* Toshiba Corporation, */ /* */ /* All Rights Reserved. */ /* */ /* Redistribution and use in source and binary forms, with or */ /* without modification, are permitted provided that the */ /* following conditions are met: */ /* */ /* - Redistributions of source code must retain the above copyright*/ /* notice, this list of conditions and the following disclaimer. */ /* */ /* - Redistributions in binary form must reproduce the above */ /* copyright notice, this list of conditions and the following */ /* disclaimer in the documentation and/or other materials */ /* provided with the distribution. */ /* */ /* - Neither the name of IBM Corporation nor the names of its */ /* contributors may be used to endorse or promote products */ /* derived from this software without specific prior written */ /* permission. */ /* */ /* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND */ /* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, */ /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */ /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */ /* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR */ /* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, */ /* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT */ /* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; */ /* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) */ /* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN */ /* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR */ /* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, */ /* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* -------------------------------------------------------------- */ /* PROLOG END TAG zYx */ #ifdef __SPU__ #ifndef _SQRTD2_H_ #define _SQRTD2_H_ 1 #include /* * FUNCTION * vector double _sqrtd2(vector double in) * * DESCRIPTION * The _sqrtd2 function computes the square root of the vector input "in" * and returns the result. * */ static __inline vector double _sqrtd2(vector double in) { vec_int4 bias_exp; vec_uint4 exp; vec_float4 fx, fg, fy, fd, fe, fy2, fhalf; vec_ullong2 nochange, denorm; vec_ullong2 mask = spu_splats(0x7FE0000000000000ULL); vec_double2 dx, de, dd, dy, dg, dy2, dhalf; vec_double2 neg; vec_double2 one = spu_splats(1.0); vec_double2 two_pow_52 = (vec_double2)spu_splats(0x4330000000000000ULL); /* If the input is a denorm, then multiply it by 2^52 so that the input is no * longer denormal. */ exp = (vec_uint4)spu_and((vec_ullong2)in, spu_splats(0xFFF0000000000000ULL)); denorm = (vec_ullong2)spu_cmpeq(exp,0); in = spu_mul(in, spu_sel(one, two_pow_52, denorm)); fhalf = spu_splats(0.5f); dhalf = spu_splats(0.5); /* Coerce the input, in, into the argument reduced space [0.5, 2.0). */ dx = spu_sel(in, dhalf, mask); /* Compute an initial single precision guess for the square root (fg) * and half reciprocal (fy2). */ fx = spu_roundtf(dx); fy2 = spu_rsqrte(fx); fy = spu_mul(fy2, fhalf); fg = spu_mul(fy2, fx); /* 12-bit approximation to sqrt(cx) */ /* Perform one single precision Newton-Raphson iteration to improve * accuracy to about 22 bits. */ fe = spu_nmsub(fy, fg, fhalf); fd = spu_nmsub(fg, fg, fx); fy = spu_madd(fy2, fe, fy); fg = spu_madd(fy, fd, fg); /* 22-bit approximation */ dy = spu_extend(fy); dg = spu_extend(fg); /* Perform two double precision Newton-Raphson iteration to improve * accuracy to about 44 and 88 bits repectively. */ dy2 = spu_add(dy, dy); de = spu_nmsub(dy, dg, dhalf); dd = spu_nmsub(dg, dg, dx); dy = spu_madd(dy2, de, dy); dg = spu_madd(dy, dd, dg); /* 44 bit approximation */ dd = spu_nmsub(dg, dg, dx); dg = spu_madd(dy, dd, dg); /* full double precision approximation */ /* Compute the expected exponent assuming that it is not a special value. * See special value handling below. */ bias_exp = spu_rlmaska(spu_sub((vec_int4)spu_and((vec_ullong2)in, mask), (vec_int4)spu_splats(0x3FE0000000000000ULL)), -1); /* Adjust the exponent bias if the input was denormalized */ bias_exp = spu_sub(bias_exp, (vec_int4)spu_and(spu_splats(0x01A0000000000000ULL), denorm)); dg = (vec_double2)spu_add((vec_int4)dg, bias_exp); /* Handle special inputs. These include: * * input output * ========= ========= * -0 -0 * 0 0 * +infinity +infinity * NaN NaN * <0 NaN */ exp = spu_shuffle(exp, exp, ((vec_uchar16) { 0,1,2,3,0,1,2,3, 8,9,10,11,8,9,10,11 })); neg = (vec_double2)spu_rlmaska((vec_int4)exp, -31); nochange = spu_or((vec_ullong2)spu_cmpeq(exp, 0x7FF00000), spu_cmpeq(in, spu_splats(0.0))); dg = spu_sel(spu_or(dg, neg), in, nochange); return (dg); } #endif /* _SQRTD2_H_ */ #endif /* __SPU__ */