/* * Copyright 2023 Siemens * * The authors hereby grant permission to use, copy, modify, distribute, * and license this software and its documentation for any purpose, provided * that existing copyright notices are retained in all copies and that this * notice is included verbatim in any distributions. No written agreement, * license, or royalty fee is required for any of the authorized uses. * Modifications to this software may be copyrighted by their authors * and need not follow the licensing terms described here, provided that * the new terms are clearly indicated on the first page of each file where * they apply. */ /* * Copyright (c) 1994-2009 Red Hat, Inc. All rights reserved. * * This copyrighted material is made available to anyone wishing to use, * modify, copy, or redistribute it subject to the terms and conditions * of the BSD License. This program is distributed in the hope that * it will be useful, but WITHOUT ANY WARRANTY expressed or implied, * including the implied warranties of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. A copy of this license is available at * http://www.opensource.org/licenses. Any Red Hat trademarks that are * incorporated in the source code or documentation are not subject to * the BSD License and may only be used or replicated with the express * permission of Red Hat, Inc. */ /****************************************************************** * The following routines are coded directly from the algorithms * and coefficients given in "Software Manual for the Elementary * Functions" by William J. Cody, Jr. and William Waite, Prentice * Hall, 1980. ******************************************************************/ /* Based on newlib/libm/mathfp/sf_atangent.c in Newlib. */ #include #include "amdgcnmach.h" static const float ROOT3 = 1.732050807; static const float a[] = { 0.0, 0.523598775, 1.570796326, 1.047197551 }; static const float q[] = { 0.1412500740e+1 }; static const float p[] = { -0.4708325141, -0.5090958253e-1 }; #if defined (__has_builtin) \ && __has_builtin (__builtin_gcn_frexpvf_exp) \ && __has_builtin (__builtin_gcn_fabsvf) DEF_VS_MATH_FUNC (v64sf, atangentf, v64sf x, v64sf v, v64sf u, int arctan2) { FUNCTION_INIT (v64sf); v64sf zero = VECTOR_INIT (0.0f); v64sf res; v64si branch = VECTOR_INIT (0); /* Preparation for calculating arctan2. */ if (arctan2) { VECTOR_IF (u == 0.0f, cond) VECTOR_IF2 (v == 0.0f, cond2, cond) errno = ERANGE; VECTOR_RETURN (VECTOR_INIT (0.0f), cond2); VECTOR_ELSE2 (cond2, cond) VECTOR_COND_MOVE (branch, VECTOR_INIT (-1), cond2); VECTOR_COND_MOVE (res, VECTOR_INIT ((float) __PI_OVER_TWO), cond2); VECTOR_ENDIF VECTOR_ENDIF VECTOR_IF (~branch, cond) /* Get the exponent values of the inputs. */ v64si expv = __builtin_gcn_frexpvf_exp (v); v64si expu = __builtin_gcn_frexpvf_exp (u); /* See if a divide will overflow. */ v64si e = expv - expu; VECTOR_IF2 (e > FLT_MAX_EXP, cond2, cond) VECTOR_COND_MOVE (branch, VECTOR_INIT (-1), cond2); VECTOR_COND_MOVE (res, VECTOR_INIT ((float) __PI_OVER_TWO), cond2); VECTOR_ENDIF /* Also check for underflow. */ VECTOR_IF2 (e < FLT_MIN_EXP, cond2, cond) VECTOR_COND_MOVE (branch, VECTOR_INIT (-1), cond2); VECTOR_COND_MOVE (res, zero, cond2); VECTOR_ENDIF VECTOR_ENDIF } VECTOR_IF (~branch, cond) v64sf f; v64si N = VECTOR_INIT (0); if (arctan2) f = __builtin_gcn_fabsvf (v / u); else f = __builtin_gcn_fabsvf (x); VECTOR_IF2 (f > 1.0f, cond2, cond) VECTOR_COND_MOVE (f, 1.0f / f, cond2); VECTOR_COND_MOVE (N, VECTOR_INIT (2), cond2); VECTOR_ENDIF VECTOR_IF2 (f > (2.0f - ROOT3), cond2, cond) float A = ROOT3 - 1.0f; VECTOR_COND_MOVE (f, (((A * f - 0.5f) - 0.5f) + f) / (ROOT3 + f), cond2); N += cond2 & 1; VECTOR_ENDIF /* Check for values that are too small. */ VECTOR_IF2 ((-z_rooteps_f < f) & (f < z_rooteps_f), cond2, cond) VECTOR_COND_MOVE (res, f, cond2); /* Calculate the Taylor series. */ VECTOR_ELSE2 (cond2, cond) v64sf g = f * f; v64sf P = (p[1] * g + p[0]) * g; v64sf Q = g + q[0]; v64sf R = P / Q; VECTOR_COND_MOVE (res, f + f * R, cond2); VECTOR_ENDIF VECTOR_COND_MOVE (res, -res, cond & (N > 1)); res += VECTOR_MERGE (VECTOR_INIT (a[1]), zero, cond & (N == 1)); res += VECTOR_MERGE (VECTOR_INIT (a[2]), zero, cond & (N == 2)); res += VECTOR_MERGE (VECTOR_INIT (a[3]), zero, cond & (N == 3)); VECTOR_ENDIF if (arctan2) { /*if (u < 0.0)*/ VECTOR_COND_MOVE (res, (float) __PI - res, u < 0.0f); /*if (v < 0.0)*/ VECTOR_COND_MOVE (res, -res, v < 0.0f); } /*else if (x < 0.0) */ else VECTOR_COND_MOVE (res, -res, x < 0.0f); VECTOR_RETURN (res, NO_COND); FUNCTION_RETURN; } #endif