/* * Copyright 2023 Siemens * * The authors hereby grant permission to use, copy, modify, distribute, * and license this software and its documentation for any purpose, provided * that existing copyright notices are retained in all copies and that this * notice is included verbatim in any distributions. No written agreement, * license, or royalty fee is required for any of the authorized uses. * Modifications to this software may be copyrighted by their authors * and need not follow the licensing terms described here, provided that * the new terms are clearly indicated on the first page of each file where * they apply. */ /* * Copyright (c) 1994-2009 Red Hat, Inc. All rights reserved. * * This copyrighted material is made available to anyone wishing to use, * modify, copy, or redistribute it subject to the terms and conditions * of the BSD License. This program is distributed in the hope that * it will be useful, but WITHOUT ANY WARRANTY expressed or implied, * including the implied warranties of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. A copy of this license is available at * http://www.opensource.org/licenses. Any Red Hat trademarks that are * incorporated in the source code or documentation are not subject to * the BSD License and may only be used or replicated with the express * permission of Red Hat, Inc. */ /***************************************************************** * The following routines are coded directly from the algorithms * and coefficients given in "Software Manual for the Elementary * Functions" by William J. Cody, Jr. and William Waite, Prentice * Hall, 1980. *****************************************************************/ /* Based on newlib/libm/mathfp/s_sqrt.c in Newlib. */ #include "amdgcnmach.h" v64si v64df_numtest (v64df); v64si v64df_ispos (v64df); #if defined (__has_builtin) \ && __has_builtin (__builtin_gcn_frexpv_mant) \ && __has_builtin (__builtin_gcn_frexpv_exp) \ && __has_builtin (__builtin_gcn_ldexpv) DEF_VD_MATH_FUNC (v64df, sqrt, v64df x) { FUNCTION_INIT (v64df); /* Check for special values. */ v64si num_type = v64df_numtest (x); VECTOR_IF (num_type == NAN, cond) errno = EDOM; VECTOR_RETURN (x, cond); VECTOR_ELSEIF (num_type == INF, cond) VECTOR_IF2 (v64df_ispos (x), cond2, cond) errno = EDOM; VECTOR_RETURN (VECTOR_INIT (z_notanum.d), cond2); VECTOR_ELSE2 (cond2,cond) errno = ERANGE; VECTOR_RETURN (VECTOR_INIT (z_infinity.d), cond); VECTOR_ENDIF VECTOR_ENDIF /* Initial checks are performed here. */ VECTOR_IF (x == 0.0, cond) VECTOR_RETURN (VECTOR_INIT (0.0), cond); VECTOR_ENDIF VECTOR_IF (x < 0.0, cond) errno = EDOM; VECTOR_RETURN (VECTOR_INIT (z_notanum.d), cond); VECTOR_ENDIF /* Find the exponent and mantissa for the form x = f * 2^exp. */ v64df f = __builtin_gcn_frexpv_mant (x); v64si exp = __builtin_gcn_frexpv_exp (x); v64si odd = (exp & 1) != 0; /* Get the initial approximation. */ v64df y = 0.41731 + 0.59016 * f; f *= 0.5f; /* Calculate the remaining iterations. */ y = y * 0.5f + f / y; y = y * 0.5f + f / y; y = y * 0.5f + f / y; /* Calculate the final value. */ VECTOR_COND_MOVE (y, y * __SQRT_HALF, odd); VECTOR_COND_MOVE (exp, exp + 1, odd); exp >>= 1; y = __builtin_gcn_ldexpv (y, exp); VECTOR_RETURN (y, NO_COND); FUNCTION_RETURN; } DEF_VARIANTS (sqrt, df, df) #endif