/* * Copyright 2023 Siemens * * The authors hereby grant permission to use, copy, modify, distribute, * and license this software and its documentation for any purpose, provided * that existing copyright notices are retained in all copies and that this * notice is included verbatim in any distributions. No written agreement, * license, or royalty fee is required for any of the authorized uses. * Modifications to this software may be copyrighted by their authors * and need not follow the licensing terms described here, provided that * the new terms are clearly indicated on the first page of each file where * they apply. */ /* * Copyright (c) 1994-2009 Red Hat, Inc. All rights reserved. * * This copyrighted material is made available to anyone wishing to use, * modify, copy, or redistribute it subject to the terms and conditions * of the BSD License. This program is distributed in the hope that * it will be useful, but WITHOUT ANY WARRANTY expressed or implied, * including the implied warranties of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. A copy of this license is available at * http://www.opensource.org/licenses. Any Red Hat trademarks that are * incorporated in the source code or documentation are not subject to * the BSD License and may only be used or replicated with the express * permission of Red Hat, Inc. */ /****************************************************************** * The following routines are coded directly from the algorithms * and coefficients given in "Software Manual for the Elementary * Functions" by William J. Cody, Jr. and William Waite, Prentice * Hall, 1980. ******************************************************************/ /* Based on newlib/libm/mathfp/sf_asine.c in Newlib. */ #include "amdgcnmach.h" v64si v64sf_numtestf (v64sf); v64sf v64sf_sqrtf (v64sf); static const float p[] = { 0.933935835, -0.504400557 }; static const float q[] = { 0.560363004e+1, -0.554846723e+1 }; static const float a[] = { 0.0, 0.785398163 }; static const float b[] = { 1.570796326, 0.785398163 }; #if defined (__has_builtin) && __has_builtin (__builtin_gcn_fabsvf) DEF_VS_MATH_FUNC (v64sf, asinef, v64sf x, int acosine) { FUNCTION_INIT (v64sf); v64si branch = VECTOR_INIT (0); /* Check for special values. */ v64si i = v64sf_numtestf (x); VECTOR_IF ((i == NAN) | (i == INF), cond) errno = EDOM; VECTOR_RETURN (VECTOR_MERGE (x, VECTOR_INIT (z_infinity_f.f), i == NAN), cond); VECTOR_ENDIF v64sf y = __builtin_gcn_fabsvf (x); v64sf g, res; VECTOR_IF (y > 0.5f, cond) VECTOR_COND_MOVE (i, VECTOR_INIT (1 - acosine), cond); /* Check for range error. */ VECTOR_IF2 (y > 1.0f, cond2, cond) errno = ERANGE; VECTOR_RETURN (VECTOR_INIT (z_notanum_f.f), cond2); VECTOR_ENDIF VECTOR_COND_MOVE (g, (1.0f - y) / 2.0f, cond); VECTOR_COND_MOVE (y, -2.0f * v64sf_sqrtf (g), cond); VECTOR_COND_MOVE (branch, VECTOR_INIT (-1), cond); VECTOR_ELSE (cond) VECTOR_COND_MOVE (i, VECTOR_INIT (acosine), cond); VECTOR_IF2 (y < z_rooteps_f, cond2, cond) VECTOR_COND_MOVE (res, y, cond2); VECTOR_ELSE2 (cond2, cond) VECTOR_COND_MOVE (g, y * y, cond2); VECTOR_ENDIF VECTOR_ENDIF VECTOR_IF ((y >= z_rooteps_f) | branch, cond) { /* Calculate the Taylor series. */ v64sf P = (p[1] * g + p[0]) * g; v64sf Q = (g + q[1]) * g + q[0]; v64sf R = P / Q; VECTOR_COND_MOVE (res, y + y * R, cond); } VECTOR_ENDIF v64sf a_i = VECTOR_MERGE (VECTOR_INIT (a[1]), VECTOR_INIT (a[0]), i != 0); /* Calculate asine or acose. */ if (acosine == 0) { VECTOR_COND_MOVE (res, (a_i + res) + a_i, NO_COND); VECTOR_IF (x < 0.0f, cond) VECTOR_COND_MOVE (res, -res, cond); VECTOR_ENDIF } else { v64sf b_i = VECTOR_MERGE (VECTOR_INIT(b[1]), VECTOR_INIT(b[0]), i != 0); VECTOR_IF (x < 0.0f, cond) VECTOR_COND_MOVE (res, (b_i + res) + b_i, cond); VECTOR_ELSE (cond) VECTOR_COND_MOVE (res, (a_i - res) + a_i, cond); VECTOR_ENDIF } VECTOR_RETURN (res, NO_COND); FUNCTION_RETURN; } #endif