/* This is a simple version of setjmp and longjmp. Nick Clifton, Cygnus Solutions, 13 June 1997. */ #include "acle-compat.h" /* ANSI concatenation macros. */ #define CONCAT(a, b) CONCAT2(a, b) #define CONCAT2(a, b) a##b #ifndef __USER_LABEL_PREFIX__ #error __USER_LABEL_PREFIX__ not defined #endif #define SYM(x) CONCAT (__USER_LABEL_PREFIX__, x) #ifdef __ELF__ #define TYPE(x) .type SYM(x),function #define SIZE(x) .size SYM(x), . - SYM(x) #else #define TYPE(x) #define SIZE(x) #endif /* Arm/Thumb interworking support: The interworking scheme expects functions to use a BX instruction to return control to their parent. Since we need this code to work in both interworked and non-interworked environments as well as with older processors which do not have the BX instruction we do the following: Test the return address. If the bottom bit is clear perform an "old style" function exit. (We know that we are in ARM mode and returning to an ARM mode caller). Otherwise use the BX instruction to perform the function exit. We know that we will never attempt to perform the BX instruction on an older processor, because that kind of processor will never be interworked, and a return address with the bottom bit set will never be generated. In addition, we do not actually assemble the BX instruction as this would require us to tell the assembler that the processor is an ARM7TDMI and it would store this information in the binary. We want this binary to be able to be linked with binaries compiled for older processors however, so we do not want such information stored there. If we are running using the APCS-26 convention however, then we never test the bottom bit, because this is part of the processor status. Instead we just do a normal return, since we know that we cannot be returning to a Thumb caller - the Thumb does not support APCS-26. Function entry is much simpler. If we are compiling for the Thumb we just switch into ARM mode and then drop through into the rest of the function. The function exit code will take care of the restore to Thumb mode. For Thumb-2 do everything in Thumb mode. */ .syntax unified #if __ARM_ARCH_ISA_THUMB == 1 && !__ARM_ARCH_ISA_ARM /* ARMv6-M-like has to be implemented in Thumb mode. */ .thumb .thumb_func .globl SYM (setjmp) TYPE (setjmp) SYM (setjmp): /* Save registers in jump buffer. */ stmia r0!, {r4, r5, r6, r7} mov r1, r8 mov r2, r9 mov r3, r10 mov r4, fp mov r5, sp mov r6, lr stmia r0!, {r1, r2, r3, r4, r5, r6} subs r0, r0, #40 /* Restore callee-saved low regs. */ ldmia r0!, {r4, r5, r6, r7} /* Return zero. */ movs r0, #0 bx lr .thumb_func .globl SYM (longjmp) TYPE (longjmp) SYM (longjmp): /* Restore High regs. */ adds r0, r0, #16 ldmia r0!, {r2, r3, r4, r5, r6} mov r8, r2 mov r9, r3 mov r10, r4 mov fp, r5 mov sp, r6 ldmia r0!, {r3} /* lr */ /* Restore low regs. */ subs r0, r0, #40 ldmia r0!, {r4, r5, r6, r7} /* Return the result argument, or 1 if it is zero. */ movs r0, r1 bne 1f movs r0, #1 1: bx r3 #else #ifdef __APCS_26__ #define RET movs pc, lr #elif defined(__thumb2__) #define RET bx lr #else #define RET tst lr, #1; \ moveq pc, lr ; \ .word 0xe12fff1e /* bx lr */ #endif #ifdef __thumb2__ .macro COND where when i\where \when .endm #else .macro COND where when .endm #endif #if defined(__thumb2__) .macro MODE .thumb .thumb_func .endm .macro PROLOGUE name .endm #elif defined(__thumb__) #define MODE .thumb_func .macro PROLOGUE name .code 16 bx pc nop .code 32 SYM (.arm_start_of.\name): .endm #else /* Arm */ #define MODE .code 32 .macro PROLOGUE name .endm #endif .macro FUNC_START name .text .align 2 MODE .globl SYM (\name) TYPE (\name) SYM (\name): PROLOGUE \name .endm .macro FUNC_END name RET SIZE (\name) .endm /* -------------------------------------------------------------------- int setjmp (jmp_buf); -------------------------------------------------------------------- */ FUNC_START setjmp /* Save all the callee-preserved registers into the jump buffer. */ #ifdef __thumb2__ mov ip, sp stmea a1!, { v1-v7, fp, ip, lr } #else stmea a1!, { v1-v7, fp, ip, sp, lr } #endif #if 0 /* Simulator does not cope with FP instructions yet. */ #ifndef __SOFTFP__ /* Save the floating point registers. */ sfmea f4, 4, [a1] #endif #endif /* When setting up the jump buffer return 0. */ mov a1, #0 FUNC_END setjmp /* -------------------------------------------------------------------- volatile void longjmp (jmp_buf, int); -------------------------------------------------------------------- */ FUNC_START longjmp /* If we have stack extension code it ought to be handled here. */ /* Restore the registers, retrieving the state when setjmp() was called. */ #ifdef __thumb2__ ldmfd a1!, { v1-v7, fp, ip, lr } mov sp, ip #else ldmfd a1!, { v1-v7, fp, ip, sp, lr } #endif #if 0 /* Simulator does not cope with FP instructions yet. */ #ifndef __SOFTFP__ /* Restore floating point registers as well. */ lfmfd f4, 4, [a1] #endif #endif /* Put the return value into the integer result register. But if it is zero then return 1 instead. */ movs a1, a2 #ifdef __thumb2__ it eq #endif moveq a1, #1 FUNC_END longjmp #endif