/* fhandler_dev_dsp: code to emulate OSS sound model /dev/dsp Written by Andy Younger (andy@snoogie.demon.co.uk) Extended by Gerd Spalink (Gerd.Spalink@t-online.de) to support recording from the audio input This file is part of Cygwin. This software is a copyrighted work licensed under the terms of the Cygwin license. Please consult the file "CYGWIN_LICENSE" for details. */ #include "winsup.h" #include #include "cygerrno.h" #include "security.h" #include "path.h" #include "fhandler.h" #include "dtable.h" #include "cygheap.h" #include "sigproc.h" #include "cygwait.h" /*------------------------------------------------------------------------ Simple encapsulation of the win32 audio device. Implementation Notes 1. Audio structures are malloced just before the first read or write to /dev/dsp. The actual buffer size is determined at that time, such that one buffer holds about 125ms of audio data. At the time of this writing, 12 buffers are allocated, so that up to 1.5 seconds can be buffered within Win32. The buffer size can be queried with the ioctl SNDCTL_DSP_GETBLKSIZE, but for this implementation only returns meaningful results if sampling rate, number of channels and number of bits per sample are not changed afterwards. The audio structures are freed when the device is reset or closed, and they are not passed to exec'ed processes. The dev_ member is cleared after a fork. This forces the child to reopen the audio device._ 2. Every open call creates a new instance of the handler. After a successful open, every subsequent open from the same process to the device fails with EBUSY. The structures are shared between duped handles, but not with children. They only inherit the settings from the parent. */ enum { DEFAULT_BLOCKS = 12, MAX_BLOCKS = 256 }; class fhandler_dev_dsp::Audio { // This class contains functionality common to Audio_in and Audio_out public: Audio (fhandler_dev_dsp *my_fh); ~Audio (); class queue; bool isvalid (); void setconvert (int format); void convert_none (unsigned char *buffer, int size_bytes) { } void convert_U8_S8 (unsigned char *buffer, int size_bytes); void convert_S16LE_U16LE (unsigned char *buffer, int size_bytes); void convert_S16LE_U16BE (unsigned char *buffer, int size_bytes); void convert_S16LE_S16BE (unsigned char *buffer, int size_bytes); void fillFormat (WAVEFORMATEX * format, int rate, int bits, int channels); static unsigned blockSize (int rate, int bits, int channels); void (fhandler_dev_dsp::Audio::*convert_) (unsigned char *buffer, int size_bytes); int bufferIndex_; // offset into pHdr_->lpData WAVEHDR *pHdr_; // data to be filled by write WAVEHDR wavehdr_[MAX_BLOCKS]; char *bigwavebuffer_; // audio samples only // Member variables below must be locked queue *Qisr2app_; // blocks passed from wave callback fhandler_dev_dsp *fh; }; class fhandler_dev_dsp::Audio::queue { // non-blocking fixed size queues for buffer management public: queue (int depth = 4); ~queue (); bool send (WAVEHDR *); // queue an item, returns true if successful bool recv (WAVEHDR **); // retrieve an item, returns true if successful void reset (); int query (); // return number of items queued inline void lock () { EnterCriticalSection (&lock_); } inline void unlock () { LeaveCriticalSection (&lock_); } inline void dellock () { debug_printf ("Deleting Critical Section"); DeleteCriticalSection (&lock_); } bool isvalid () { return storage_; } private: CRITICAL_SECTION lock_; int head_; int tail_; int depth_; WAVEHDR **storage_; }; static void CALLBACK waveOut_callback (HWAVEOUT hWave, UINT msg, DWORD_PTR instance, DWORD_PTR param1, DWORD_PTR param2); class fhandler_dev_dsp::Audio_out: public Audio { public: Audio_out (fhandler_dev_dsp *my_fh) : Audio (my_fh) {} void fork_fixup (HANDLE parent); bool query (int rate, int bits, int channels); bool start (); void stop (bool immediately = false); int write (const char *pSampleData, int nBytes); void buf_info (audio_buf_info *p, int rate, int bits, int channels); static void default_buf_info (audio_buf_info *p, int rate, int bits, int channels); void callback_sampledone (WAVEHDR *pHdr); bool parsewav (const char *&pData, int &nBytes, int rate, int bits, int channels); private: void init (unsigned blockSize); void waitforallsent (); bool waitforspace (); bool sendcurrent (); HWAVEOUT dev_; // The wave device /* Private copies of audiofreq_, audiobits_, audiochannels_, possibly set from wave file */ int freq_; int bits_; int channels_; friend fhandler_dev_dsp; }; static void CALLBACK waveIn_callback (HWAVEIN hWave, UINT msg, DWORD_PTR instance, DWORD_PTR param1, DWORD_PTR param2); class fhandler_dev_dsp::Audio_in: public Audio { public: Audio_in (fhandler_dev_dsp *my_fh) : Audio (my_fh) {} void fork_fixup (HANDLE parent); bool query (int rate, int bits, int channels); bool start (int rate, int bits, int channels); void stop (); bool read (char *pSampleData, int &nBytes); void buf_info (audio_buf_info *p, int rate, int bits, int channels); static void default_buf_info (audio_buf_info *p, int rate, int bits, int channels); void callback_blockfull (WAVEHDR *pHdr); private: bool init (unsigned blockSize); bool queueblock (WAVEHDR *pHdr); bool waitfordata (); // blocks until we have a good pHdr_ unless O_NONBLOCK HWAVEIN dev_; }; /* -------------------------------------------------------------------- Implementation */ // Simple fixed length FIFO queue implementation for audio buffer management fhandler_dev_dsp::Audio::queue::queue (int depth) { // allow space for one extra object in the queue // so we can distinguish full and empty status depth_ = depth; storage_ = new WAVEHDR *[depth_ + 1]; } fhandler_dev_dsp::Audio::queue::~queue () { delete[] storage_; } void fhandler_dev_dsp::Audio::queue::reset () { /* When starting, after reset and after fork */ head_ = tail_ = 0; debug_printf ("InitializeCriticalSection"); memset (&lock_, 0, sizeof (lock_)); InitializeCriticalSection (&lock_); } bool fhandler_dev_dsp::Audio::queue::send (WAVEHDR *x) { bool res = false; lock (); if (query () == depth_) system_printf ("Queue overflow"); else { storage_[tail_] = x; if (++tail_ > depth_) tail_ = 0; res = true; } unlock (); return res; } bool fhandler_dev_dsp::Audio::queue::recv (WAVEHDR **x) { bool res = false; lock (); if (query () != 0) { *x = storage_[head_]; if (++head_ > depth_) head_ = 0; res = true; } unlock (); return res; } int fhandler_dev_dsp::Audio::queue::query () { int n = tail_ - head_; if (n < 0) n += depth_ + 1; return n; } // Audio class implements functionality need for both read and write fhandler_dev_dsp::Audio::Audio (fhandler_dev_dsp *my_fh) { bigwavebuffer_ = NULL; fh = my_fh; Qisr2app_ = new queue (fh->fragstotal_); convert_ = &fhandler_dev_dsp::Audio::convert_none; } fhandler_dev_dsp::Audio::~Audio () { debug_printf(""); delete Qisr2app_; delete[] bigwavebuffer_; } inline bool fhandler_dev_dsp::Audio::isvalid () { return bigwavebuffer_ && Qisr2app_ && Qisr2app_->isvalid (); } void fhandler_dev_dsp::Audio::setconvert (int format) { switch (format) { case AFMT_S8: convert_ = &fhandler_dev_dsp::Audio::convert_U8_S8; debug_printf ("U8_S8"); break; case AFMT_U16_LE: convert_ = &fhandler_dev_dsp::Audio::convert_S16LE_U16LE; debug_printf ("S16LE_U16LE"); break; case AFMT_U16_BE: convert_ = &fhandler_dev_dsp::Audio::convert_S16LE_U16BE; debug_printf ("S16LE_U16BE"); break; case AFMT_S16_BE: convert_ = &fhandler_dev_dsp::Audio::convert_S16LE_S16BE; debug_printf ("S16LE_S16BE"); break; default: convert_ = &fhandler_dev_dsp::Audio::convert_none; debug_printf ("none"); } } void fhandler_dev_dsp::Audio::convert_U8_S8 (unsigned char *buffer, int size_bytes) { while (size_bytes-- > 0) { *buffer ^= (unsigned char)0x80; buffer++; } } void fhandler_dev_dsp::Audio::convert_S16LE_U16BE (unsigned char *buffer, int size_bytes) { int size_samples = size_bytes / 2; unsigned char hi, lo; while (size_samples-- > 0) { hi = buffer[0]; lo = buffer[1]; *buffer++ = lo; *buffer++ = hi ^ (unsigned char)0x80; } } void fhandler_dev_dsp::Audio::convert_S16LE_U16LE (unsigned char *buffer, int size_bytes) { int size_samples = size_bytes / 2; while (size_samples-- > 0) { buffer++; *buffer ^= (unsigned char)0x80; buffer++; } } void fhandler_dev_dsp::Audio::convert_S16LE_S16BE (unsigned char *buffer, int size_bytes) { int size_samples = size_bytes / 2; unsigned char hi, lo; while (size_samples-- > 0) { hi = buffer[0]; lo = buffer[1]; *buffer++ = lo; *buffer++ = hi; } } void fhandler_dev_dsp::Audio::fillFormat (WAVEFORMATEX * format, int rate, int bits, int channels) { memset (format, 0, sizeof (*format)); format->wFormatTag = WAVE_FORMAT_PCM; format->wBitsPerSample = bits; format->nChannels = channels; format->nSamplesPerSec = rate; format->nAvgBytesPerSec = format->nSamplesPerSec * format->nChannels * (bits / 8); format->nBlockAlign = format->nChannels * (bits / 8); } // calculate a good block size unsigned fhandler_dev_dsp::Audio::blockSize (int rate, int bits, int channels) { unsigned blockSize; blockSize = ((bits / 8) * channels * rate) / 8; // approx 125ms per block // round up to multiple of 64 blockSize += 0x3f; blockSize &= ~0x3f; return blockSize; } //======================================================================= void fhandler_dev_dsp::Audio_out::fork_fixup (HANDLE parent) { /* Null dev_. It will be necessary to reset the queue, open the device and create a lock when writing */ debug_printf ("parent=%p", parent); dev_ = NULL; } bool fhandler_dev_dsp::Audio_out::query (int rate, int bits, int channels) { WAVEFORMATEX format; MMRESULT rc; fillFormat (&format, rate, bits, channels); rc = waveOutOpen (NULL, WAVE_MAPPER, &format, 0L, 0L, WAVE_FORMAT_QUERY); debug_printf ("%u = waveOutOpen(freq=%d bits=%d channels=%d)", rc, rate, bits, channels); return (rc == MMSYSERR_NOERROR); } bool fhandler_dev_dsp::Audio_out::start () { WAVEFORMATEX format; MMRESULT rc; if (dev_) return true; /* In case of fork bigwavebuffer may already exist */ if (!bigwavebuffer_) bigwavebuffer_ = new char[fh->fragstotal_ * fh->fragsize_]; if (!isvalid ()) return false; fillFormat (&format, freq_, bits_, channels_); rc = waveOutOpen (&dev_, WAVE_MAPPER, &format, (DWORD_PTR) waveOut_callback, (DWORD_PTR) this, CALLBACK_FUNCTION); if (rc == MMSYSERR_NOERROR) init (fh->fragsize_); debug_printf ("%u = waveOutOpen(freq=%d bits=%d channels=%d)", rc, freq_, bits_, channels_); return (rc == MMSYSERR_NOERROR); } void fhandler_dev_dsp::Audio_out::stop (bool immediately) { MMRESULT rc; WAVEHDR *pHdr; debug_printf ("dev_=%p", dev_); if (dev_) { if (!immediately) { sendcurrent (); // force out last block whatever size.. waitforallsent (); // block till finished.. } rc = waveOutReset (dev_); debug_printf ("%u = waveOutReset()", rc); while (Qisr2app_->recv (&pHdr)) { rc = waveOutUnprepareHeader (dev_, pHdr, sizeof (WAVEHDR)); debug_printf ("%u = waveOutUnprepareHeader(%p)", rc, pHdr); } no_thread_exit_protect for_now (true); rc = waveOutClose (dev_); debug_printf ("%u = waveOutClose()", rc); Qisr2app_->dellock (); } } void fhandler_dev_dsp::Audio_out::init (unsigned blockSize) { int i; // internally queue all of our buffer for later use by write Qisr2app_->reset (); for (i = 0; i < fh->fragstotal_; i++) { wavehdr_[i].lpData = &bigwavebuffer_[i * blockSize]; wavehdr_[i].dwUser = (int) blockSize; wavehdr_[i].dwFlags = 0; if (!Qisr2app_->send (&wavehdr_[i])) { system_printf ("Internal Error i=%d", i); break; // should not happen } } pHdr_ = NULL; } int fhandler_dev_dsp::Audio_out::write (const char *pSampleData, int nBytes) { int bytes_to_write = nBytes; while (bytes_to_write != 0) { // Block if all blocks used until at least one is free if (!waitforspace ()) { if (bytes_to_write != nBytes) break; return -1; } int sizeleft = (int)pHdr_->dwUser - bufferIndex_; if (bytes_to_write < sizeleft) { // all data fits into the current block, with some space left memcpy (&pHdr_->lpData[bufferIndex_], pSampleData, bytes_to_write); bufferIndex_ += bytes_to_write; bytes_to_write = 0; break; } else { // data will fill up the current block memcpy (&pHdr_->lpData[bufferIndex_], pSampleData, sizeleft); bufferIndex_ += sizeleft; sendcurrent (); pSampleData += sizeleft; bytes_to_write -= sizeleft; } } return nBytes - bytes_to_write; } void fhandler_dev_dsp::Audio_out::buf_info (audio_buf_info *p, int rate, int bits, int channels) { if (dev_) { /* If the device is running we use the internal values, possibly set from the wave file. */ p->fragstotal = fh->fragstotal_; p->fragsize = fh->fragsize_; p->fragments = Qisr2app_->query (); if (pHdr_ != NULL) p->bytes = (int)pHdr_->dwUser - bufferIndex_ + p->fragsize * p->fragments; else p->bytes = p->fragsize * p->fragments; } else { default_buf_info(p, rate, bits, channels); } } void fhandler_dev_dsp::Audio_out::default_buf_info (audio_buf_info *p, int rate, int bits, int channels) { p->fragstotal = DEFAULT_BLOCKS; p->fragsize = blockSize (rate, bits, channels); p->fragments = p->fragstotal; p->bytes = p->fragsize * p->fragments; } /* This is called on an interupt so use locking.. Note Qisr2app_ is used so we should wrap all references to it in locks. */ inline void fhandler_dev_dsp::Audio_out::callback_sampledone (WAVEHDR *pHdr) { Qisr2app_->send (pHdr); ReleaseSemaphore (fh->get_select_sem (), get_obj_handle_count (fh->get_select_sem ()) - 1, NULL); } bool fhandler_dev_dsp::Audio_out::waitforspace () { WAVEHDR *pHdr; MMRESULT rc = WAVERR_STILLPLAYING; if (pHdr_ != NULL) return true; while (!Qisr2app_->recv (&pHdr)) { if (fh->is_nonblocking ()) { set_errno (EAGAIN); return false; } debug_printf ("1ms"); switch (cygwait (1)) { case WAIT_SIGNALED: if (!_my_tls.call_signal_handler ()) { set_errno (EINTR); return false; } break; case WAIT_CANCELED: pthread::static_cancel_self (); /*NOTREACHED*/ default: break; } } if (pHdr->dwFlags) { /* Errors are ignored here. They will probbaly cause a failure in the subsequent PrepareHeader */ rc = waveOutUnprepareHeader (dev_, pHdr, sizeof (WAVEHDR)); debug_printf ("%u = waveOutUnprepareHeader(%p)", rc, pHdr); } pHdr_ = pHdr; bufferIndex_ = 0; return true; } void fhandler_dev_dsp::Audio_out::waitforallsent () { while (Qisr2app_->query () != fh->fragstotal_) { debug_printf ("%d blocks in Qisr2app", Qisr2app_->query ()); cygwait (1); sendcurrent (); } } // send the block described by pHdr_ and bufferIndex_ to wave device bool fhandler_dev_dsp::Audio_out::sendcurrent () { WAVEHDR *pHdr = pHdr_; MMRESULT rc; debug_printf ("pHdr=%p bytes=%d", pHdr, bufferIndex_); if (pHdr_ == NULL) return false; pHdr_ = NULL; // Sample buffer conversion (this->*convert_) ((unsigned char *)pHdr->lpData, bufferIndex_); // Send internal buffer out to the soundcard pHdr->dwBufferLength = bufferIndex_; rc = waveOutPrepareHeader (dev_, pHdr, sizeof (WAVEHDR)); debug_printf ("%u = waveOutPrepareHeader(%p)", rc, pHdr); if (rc == MMSYSERR_NOERROR) { rc = waveOutWrite (dev_, pHdr, sizeof (WAVEHDR)); debug_printf ("%u = waveOutWrite(%p)", rc, pHdr); } if (rc == MMSYSERR_NOERROR) return true; /* FIXME: Should we return an error instead ?*/ pHdr->dwFlags = 0; /* avoid calling UnprepareHeader again */ Qisr2app_->send (pHdr); return false; } //------------------------------------------------------------------------ // Call back routine static void CALLBACK waveOut_callback (HWAVEOUT hWave, UINT msg, DWORD_PTR instance, DWORD_PTR param1, DWORD_PTR param2) { if (msg == WOM_DONE) { fhandler_dev_dsp::Audio_out *ptr = (fhandler_dev_dsp::Audio_out *) instance; ptr->callback_sampledone ((WAVEHDR *) param1); } } //------------------------------------------------------------------------ // wav file detection.. #pragma pack(1) struct wavchunk { char id[4]; unsigned int len; }; struct wavformat { unsigned short wFormatTag; unsigned short wChannels; unsigned int dwSamplesPerSec; unsigned int dwAvgBytesPerSec; unsigned short wBlockAlign; unsigned short wBitsPerSample; }; #pragma pack() bool fhandler_dev_dsp::Audio_out::parsewav (const char * &pData, int &nBytes, int dev_freq, int dev_bits, int dev_channels) { int len; const char *end = pData + nBytes; const char *pDat; int skip = 0; /* Start with default values from the device handler */ freq_ = dev_freq; bits_ = dev_bits; channels_ = dev_channels; setconvert (bits_ == 8 ? AFMT_U8 : AFMT_S16_LE); // Check alignment first: A lot of the code below depends on it if (((uintptr_t)pData & 0x3) != 0) return false; if (!(pData[0] == 'R' && pData[1] == 'I' && pData[2] == 'F' && pData[3] == 'F')) return false; if (!(pData[8] == 'W' && pData[9] == 'A' && pData[10] == 'V' && pData[11] == 'E')) return false; len = *(int *) &pData[4]; len -= 12; pDat = pData + 12; skip = 12; while ((len > 0) && (pDat + sizeof (wavchunk) < end)) { /* We recognize two kinds of wavchunk: "fmt " for the PCM parameters (only PCM supported here) "data" for the start of PCM data */ wavchunk * pChunk = (wavchunk *) pDat; int blklen = pChunk-> len; if (pChunk->id[0] == 'f' && pChunk->id[1] == 'm' && pChunk->id[2] == 't' && pChunk->id[3] == ' ') { wavformat *format = (wavformat *) (pChunk + 1); if ((char *) (format + 1) >= end) return false; // We have found the parameter chunk if (format->wFormatTag == 0x0001) { // Micr*s*ft PCM; check if parameters work with our device if (query (format->dwSamplesPerSec, format->wBitsPerSample, format->wChannels)) { // return the parameters we found freq_ = format->dwSamplesPerSec; bits_ = format->wBitsPerSample; channels_ = format->wChannels; } } } else { if (pChunk->id[0] == 'd' && pChunk->id[1] == 'a' && pChunk->id[2] == 't' && pChunk->id[3] == 'a') { // throw away all the header & not output it to the soundcard. skip += sizeof (wavchunk); debug_printf ("Discard %d bytes wave header", skip); pData += skip; nBytes -= skip; setconvert (bits_ == 8 ? AFMT_U8 : AFMT_S16_LE); return true; } } pDat += blklen + sizeof (wavchunk); skip += blklen + sizeof (wavchunk); len -= blklen + sizeof (wavchunk); } return false; } /* ======================================================================== Buffering concept for Audio_in: On the first read, we queue all blocks of our bigwavebuffer for reception and start the wave-in device. We manage queues of pointers to WAVEHDR When a block has been filled, the callback puts the corresponding WAVEHDR pointer into a queue. The function read() blocks (polled, sigh) until at least one good buffer has arrived, then the data is copied into the buffer provided to read(). After a buffer has been fully used by read(), it is queued again to the wave-in device immediately. The function read() iterates until all data requested has been received, there is no way to interrupt it */ void fhandler_dev_dsp::Audio_in::fork_fixup (HANDLE parent) { /* Null dev_. It will be necessary to reset the queue, open the device and create a lock when reading */ debug_printf ("parent=%p", parent); dev_ = NULL; } bool fhandler_dev_dsp::Audio_in::query (int rate, int bits, int channels) { WAVEFORMATEX format; MMRESULT rc; fillFormat (&format, rate, bits, channels); rc = waveInOpen (NULL, WAVE_MAPPER, &format, 0L, 0L, WAVE_FORMAT_QUERY); debug_printf ("%u = waveInOpen(freq=%d bits=%d channels=%d)", rc, rate, bits, channels); return (rc == MMSYSERR_NOERROR); } bool fhandler_dev_dsp::Audio_in::start (int rate, int bits, int channels) { WAVEFORMATEX format; MMRESULT rc; if (dev_) return true; /* In case of fork bigwavebuffer may already exist */ if (!bigwavebuffer_) bigwavebuffer_ = new char[fh->fragstotal_ * fh->fragsize_]; if (!isvalid ()) return false; fillFormat (&format, rate, bits, channels); rc = waveInOpen (&dev_, WAVE_MAPPER, &format, (DWORD_PTR) waveIn_callback, (DWORD_PTR) this, CALLBACK_FUNCTION); debug_printf ("%u = waveInOpen(rate=%d bits=%d channels=%d)", rc, rate, bits, channels); if (rc == MMSYSERR_NOERROR) { if (!init (fh->fragsize_)) return false; } return (rc == MMSYSERR_NOERROR); } void fhandler_dev_dsp::Audio_in::stop () { MMRESULT rc; WAVEHDR *pHdr; debug_printf ("dev_=%p", dev_); if (dev_) { /* Note that waveInReset calls our callback for all incomplete buffers. Since all the win32 wave functions appear to use a common lock, we must not call into the wave API from the callback. Otherwise we end up in a deadlock. */ rc = waveInReset (dev_); debug_printf ("%u = waveInReset()", rc); while (Qisr2app_->recv (&pHdr)) { rc = waveInUnprepareHeader (dev_, pHdr, sizeof (WAVEHDR)); debug_printf ("%u = waveInUnprepareHeader(%p)", rc, pHdr); } no_thread_exit_protect for_now (true); rc = waveInClose (dev_); debug_printf ("%u = waveInClose()", rc); Qisr2app_->dellock (); } } bool fhandler_dev_dsp::Audio_in::queueblock (WAVEHDR *pHdr) { MMRESULT rc; rc = waveInPrepareHeader (dev_, pHdr, sizeof (WAVEHDR)); debug_printf ("%u = waveInPrepareHeader(%p)", rc, pHdr); if (rc == MMSYSERR_NOERROR) { rc = waveInAddBuffer (dev_, pHdr, sizeof (WAVEHDR)); debug_printf ("%u = waveInAddBuffer(%p)", rc, pHdr); } if (rc == MMSYSERR_NOERROR) return true; /* FIXME: Should the calling function return an error instead ?*/ pHdr->dwFlags = 0; /* avoid calling UnprepareHeader again */ pHdr->dwBytesRecorded = 0; /* no data will have been read */ Qisr2app_->send (pHdr); return false; } bool fhandler_dev_dsp::Audio_in::init (unsigned blockSize) { MMRESULT rc; int i; // try to queue all of our buffer for reception Qisr2app_->reset (); for (i = 0; i < fh->fragstotal_; i++) { wavehdr_[i].lpData = &bigwavebuffer_[i * blockSize]; wavehdr_[i].dwBufferLength = blockSize; wavehdr_[i].dwFlags = 0; if (!queueblock (&wavehdr_[i])) break; } pHdr_ = NULL; rc = waveInStart (dev_); debug_printf ("%u = waveInStart(), queued=%d", rc, i); return (rc == MMSYSERR_NOERROR); } bool fhandler_dev_dsp::Audio_in::read (char *pSampleData, int &nBytes) { int bytes_to_read = nBytes; nBytes = 0; debug_printf ("pSampleData=%p nBytes=%d", pSampleData, bytes_to_read); while (bytes_to_read != 0) { // Block till next sound has been read if (!waitfordata ()) { if (nBytes) return true; nBytes = -1; return false; } // Handle gathering our blocks into smaller or larger buffer int sizeleft = pHdr_->dwBytesRecorded - bufferIndex_; if (bytes_to_read < sizeleft) { // The current buffer holds more data than requested memcpy (pSampleData, &pHdr_->lpData[bufferIndex_], bytes_to_read); (this->*convert_) ((unsigned char *)pSampleData, bytes_to_read); nBytes += bytes_to_read; bufferIndex_ += bytes_to_read; debug_printf ("got %d", bytes_to_read); break; // done; use remaining data in next call to read } else { // not enough or exact amount in the current buffer if (sizeleft) { // use up what we have memcpy (pSampleData, &pHdr_->lpData[bufferIndex_], sizeleft); (this->*convert_) ((unsigned char *)pSampleData, sizeleft); nBytes += sizeleft; bytes_to_read -= sizeleft; pSampleData += sizeleft; debug_printf ("got %d", sizeleft); } queueblock (pHdr_); // re-queue this block to ISR pHdr_ = NULL; // need to wait for a new block // if more samples are needed, we need a new block now } } debug_printf ("end nBytes=%d", nBytes); return true; } bool fhandler_dev_dsp::Audio_in::waitfordata () { WAVEHDR *pHdr; MMRESULT rc; if (pHdr_ != NULL) return true; while (!Qisr2app_->recv (&pHdr)) { if (fh->is_nonblocking ()) { set_errno (EAGAIN); return false; } debug_printf ("1ms"); switch (cygwait (1)) { case WAIT_SIGNALED: if (!_my_tls.call_signal_handler ()) { set_errno (EINTR); return false; } break; case WAIT_CANCELED: pthread::static_cancel_self (); /*NOTREACHED*/ default: break; } } if (pHdr->dwFlags) /* Zero if queued following error in queueblock */ { /* Errors are ignored here. They will probbaly cause a failure in the subsequent PrepareHeader */ rc = waveInUnprepareHeader (dev_, pHdr, sizeof (WAVEHDR)); debug_printf ("%u = waveInUnprepareHeader(%p)", rc, pHdr); } pHdr_ = pHdr; bufferIndex_ = 0; return true; } void fhandler_dev_dsp::Audio_in::default_buf_info (audio_buf_info *p, int rate, int bits, int channels) { p->fragstotal = DEFAULT_BLOCKS; p->fragsize = blockSize (rate, bits, channels); p->fragments = 0; p->bytes = 0; } void fhandler_dev_dsp::Audio_in::buf_info (audio_buf_info *p, int rate, int bits, int channels) { if (dev_) { p->fragstotal = fh->fragstotal_; p->fragsize = fh->fragsize_; p->fragments = Qisr2app_->query (); if (pHdr_ != NULL) p->bytes = pHdr_->dwBytesRecorded - bufferIndex_ + p->fragsize * p->fragments; else p->bytes = p->fragsize * p->fragments; } else { default_buf_info(p, rate, bits, channels); } } inline void fhandler_dev_dsp::Audio_in::callback_blockfull (WAVEHDR *pHdr) { Qisr2app_->send (pHdr); ReleaseSemaphore (fh->get_select_sem (), get_obj_handle_count (fh->get_select_sem ()) - 1, NULL); } static void CALLBACK waveIn_callback (HWAVEIN hWave, UINT msg, DWORD_PTR instance, DWORD_PTR param1, DWORD_PTR param2) { if (msg == WIM_DATA) { fhandler_dev_dsp::Audio_in *ptr = (fhandler_dev_dsp::Audio_in *) instance; ptr->callback_blockfull ((WAVEHDR *) param1); } } /* ------------------------------------------------------------------------ /dev/dsp handler ------------------------------------------------------------------------ */ fhandler_dev_dsp::fhandler_dev_dsp (): fhandler_base () { audio_in_ = NULL; audio_out_ = NULL; dev ().parse (FH_OSS_DSP); } ssize_t fhandler_dev_dsp::write (const void *ptr, size_t len) { return base ()->_write (ptr, len); } void fhandler_dev_dsp::read (void *ptr, size_t& len) { base ()->_read (ptr, len); } int fhandler_dev_dsp::ioctl (unsigned int cmd, void *buf) { return base ()->_ioctl (cmd, buf); } int fhandler_dev_dsp::fcntl (int cmd, intptr_t arg) { return base ()->_fcntl (cmd, arg); } void fhandler_dev_dsp::fixup_after_fork (HANDLE parent) { base ()->_fixup_after_fork (parent); } void fhandler_dev_dsp::fixup_after_exec () { base ()->_fixup_after_exec (); } int fhandler_dev_dsp::open (int flags, mode_t mode) { int ret = -1, err = 0; UINT num_in = 0, num_out = 0; set_flags ((flags & ~O_TEXT) | O_BINARY); // Work out initial sample format & frequency, /dev/dsp defaults audioformat_ = AFMT_U8; audiofreq_ = 8000; audiobits_ = 8; audiochannels_ = 1; fragstotal_ = DEFAULT_BLOCKS; fragment_has_been_set = false; switch (flags & O_ACCMODE) { case O_RDWR: if ((num_in = waveInGetNumDevs ()) == 0) err = ENXIO; fallthrough; case O_WRONLY: if ((num_out = waveOutGetNumDevs ()) == 0) err = ENXIO; break; case O_RDONLY: if ((num_in = waveInGetNumDevs ()) == 0) err = ENXIO; break; default: err = EINVAL; } if (err) set_errno (err); else ret = open_null (flags); select_sem = CreateSemaphore (sec_none_cloexec (mode), 0, INT32_MAX, NULL); debug_printf ("ACCMODE=%y audio_in=%d audio_out=%d, err=%d, ret=%d", flags & O_ACCMODE, num_in, num_out, err, ret); if (ret >= 0) being_closed = false; return ret; } #define IS_WRITE() ((get_flags() & O_ACCMODE) != O_RDONLY) #define IS_READ() ((get_flags() & O_ACCMODE) != O_WRONLY) ssize_t fhandler_dev_dsp::_write (const void *ptr, size_t len) { debug_printf ("ptr=%p len=%ld", ptr, len); int len_s = len; const char *ptr_s = static_cast (ptr); if (being_closed) { set_errno (EBADF); return -1; } if (audio_out_) /* nothing to do */; else if (IS_WRITE ()) { if (!fragment_has_been_set) fragsize_ = Audio::blockSize (audiofreq_, audiobits_, audiochannels_); debug_printf ("Allocating"); if (!(audio_out_ = new Audio_out (this))) return -1; /* check for wave file & get parameters & skip header if possible. */ if (audio_out_->parsewav (ptr_s, len_s, audiofreq_, audiobits_, audiochannels_)) debug_printf ("=> ptr_s=%p len_s=%d", ptr_s, len_s); } else { set_errno (EBADF); // device was opened for read? return -1; } /* Open audio device properly with callbacks. Private parameters were set in call to parsewav. This is a no-op when there are successive writes in the same process */ if (!audio_out_->start ()) { set_errno (EIO); return -1; } int written = audio_out_->write (ptr_s, len_s); if (written < 0) { if (len - len_s > 0) return len - len_s; return -1; } return len - len_s + written; } void fhandler_dev_dsp::_read (void *ptr, size_t& len) { debug_printf ("ptr=%p len=%ld", ptr, len); if (audio_in_) /* nothing to do */; else if (IS_READ ()) { if (!fragment_has_been_set) fragsize_ = Audio::blockSize (audiofreq_, audiobits_, audiochannels_); debug_printf ("Allocating"); if (!(audio_in_ = new Audio_in (this))) { len = (size_t)-1; return; } audio_in_->setconvert (audioformat_); } else { len = (size_t)-1; set_errno (EBADF); // device was opened for write? return; } /* Open audio device properly with callbacks. This is a noop when there are successive reads in the same process */ if (!audio_in_->start (audiofreq_, audiobits_, audiochannels_)) { len = (size_t)-1; set_errno (EIO); return; } int res = len; audio_in_->read ((char *)ptr, res); len = (size_t)res; } void fhandler_dev_dsp::close_audio_in () { if (audio_in_) { audio_in_->stop (); delete audio_in_; audio_in_ = NULL; } } void fhandler_dev_dsp::close_audio_out (bool immediately) { if (audio_out_) { audio_out_->stop (immediately); delete audio_out_; audio_out_ = NULL; } } int fhandler_dev_dsp::close () { debug_printf ("audio_in=%p audio_out=%p", audio_in_, audio_out_); being_closed = true; close_audio_in (); close_audio_out (); ReleaseSemaphore (select_sem, get_obj_handle_count (select_sem) - 1, NULL); CloseHandle (select_sem); select_sem = NULL; return fhandler_base::close (); } int fhandler_dev_dsp::_ioctl (unsigned int cmd, void *buf) { debug_printf ("audio_in=%p audio_out=%p", audio_in_, audio_out_); int *intbuf = (int *) buf; switch (cmd) { #define CASE(a) case a : debug_printf ("/dev/dsp: ioctl %s", #a); CASE (SNDCTL_DSP_RESET) close_audio_in (); close_audio_out (true); return 0; break; CASE (SNDCTL_DSP_GETBLKSIZE) if (!fragment_has_been_set) fragsize_ = Audio::blockSize (audiofreq_, audiobits_, audiochannels_); *intbuf = fragsize_; return 0; CASE (SNDCTL_DSP_SETFMT) { int nBits; switch (*intbuf) { case AFMT_QUERY: *intbuf = audioformat_; return 0; break; case AFMT_U16_BE: case AFMT_U16_LE: case AFMT_S16_BE: case AFMT_S16_LE: nBits = 16; break; case AFMT_U8: case AFMT_S8: nBits = 8; break; default: nBits = 0; } if (nBits && IS_WRITE ()) { close_audio_out (); if (audio_out_->query (audiofreq_, nBits, audiochannels_)) { audiobits_ = nBits; audioformat_ = *intbuf; } else { *intbuf = audiobits_; return -1; } } if (nBits && IS_READ ()) { close_audio_in (); if (audio_in_->query (audiofreq_, nBits, audiochannels_)) { audiobits_ = nBits; audioformat_ = *intbuf; } else { *intbuf = audiobits_; return -1; } } return 0; } CASE (SNDCTL_DSP_SPEED) if (IS_WRITE ()) { close_audio_out (); if (audio_out_->query (*intbuf, audiobits_, audiochannels_)) audiofreq_ = *intbuf; else { *intbuf = audiofreq_; return -1; } } if (IS_READ ()) { close_audio_in (); if (audio_in_->query (*intbuf, audiobits_, audiochannels_)) audiofreq_ = *intbuf; else { *intbuf = audiofreq_; return -1; } } return 0; CASE (SNDCTL_DSP_STEREO) { int nChannels = *intbuf + 1; int res = _ioctl (SNDCTL_DSP_CHANNELS, &nChannels); *intbuf = nChannels - 1; return res; } CASE (SNDCTL_DSP_CHANNELS) { int nChannels = *intbuf; if (IS_WRITE ()) { close_audio_out (); if (audio_out_->query (audiofreq_, audiobits_, nChannels)) audiochannels_ = nChannels; else { *intbuf = audiochannels_; return -1; } } if (IS_READ ()) { close_audio_in (); if (audio_in_->query (audiofreq_, audiobits_, nChannels)) audiochannels_ = nChannels; else { *intbuf = audiochannels_; return -1; } } return 0; } CASE (SNDCTL_DSP_GETOSPACE) { if (!IS_WRITE ()) { set_errno(EBADF); return -1; } audio_buf_info *p = (audio_buf_info *) buf; if (audio_out_) audio_out_->buf_info (p, audiofreq_, audiobits_, audiochannels_); else if (fragment_has_been_set) { p->bytes = fragsize_ * fragstotal_; p->fragsize = fragsize_; p->fragstotal = fragstotal_; p->fragments = fragstotal_; } else Audio_out::default_buf_info(p, audiofreq_, audiobits_, audiochannels_); debug_printf ("buf=%p frags=%d fragsize=%d bytes=%d", buf, p->fragments, p->fragsize, p->bytes); return 0; } CASE (SNDCTL_DSP_GETISPACE) { if (!IS_READ ()) { set_errno(EBADF); return -1; } audio_buf_info *p = (audio_buf_info *) buf; if (audio_in_) audio_in_->buf_info (p, audiofreq_, audiobits_, audiochannels_); else if (fragment_has_been_set) { p->bytes = 0; p->fragsize = fragsize_; p->fragstotal = fragstotal_; p->fragments = 0; } else Audio_in::default_buf_info(p, audiofreq_, audiobits_, audiochannels_); debug_printf ("buf=%p frags=%d fragsize=%d bytes=%d", buf, p->fragments, p->fragsize, p->bytes); return 0; } CASE (SNDCTL_DSP_SETFRAGMENT) { if (audio_out_ || audio_in_) return 0; /* Too late to set fragment. Ignore. */ int *p = (int *) buf; fragstotal_ = min (*p >> 16, MAX_BLOCKS); fragsize_ = 1 << (*p & 0xffff); fragment_has_been_set = true; return 0; } CASE (SNDCTL_DSP_GETFMTS) *intbuf = AFMT_S16_LE | AFMT_U8; // only native formats returned here return 0; CASE (SNDCTL_DSP_GETCAPS) *intbuf = DSP_CAP_BATCH | DSP_CAP_DUPLEX; return 0; CASE (SNDCTL_DSP_POST) if (audio_out_) audio_out_->sendcurrent (); // force out last block whatever size.. return 0; CASE (SNDCTL_DSP_SYNC) if (audio_out_) { audio_out_->sendcurrent (); // force out last block whatever size.. audio_out_->waitforallsent (); // block till finished.. } return 0; default: return fhandler_base::ioctl (cmd, buf); break; #undef CASE } } int fhandler_dev_dsp::_fcntl (int cmd, intptr_t arg) { return fhandler_base::fcntl(cmd, arg); } void fhandler_dev_dsp::_fixup_after_fork (HANDLE parent) { // called from new child process debug_printf ("audio_in=%p audio_out=%p", audio_in_, audio_out_); fhandler_base::fixup_after_fork (parent); if (audio_in_) audio_in_->fork_fixup (parent); if (audio_out_) audio_out_->fork_fixup (parent); } void fhandler_dev_dsp::_fixup_after_exec () { debug_printf ("audio_in=%p audio_out=%p, close_on_exec %d", audio_in_, audio_out_, close_on_exec ()); if (!close_on_exec ()) { audio_in_ = NULL; audio_out_ = NULL; } } bool fhandler_dev_dsp::_write_ready () { audio_buf_info info; if (audio_out_) { audio_out_->buf_info (&info, audiofreq_, audiobits_, audiochannels_); return info.bytes > 0; } else return true; } bool fhandler_dev_dsp::_read_ready () { audio_buf_info info; if (audio_in_) { audio_in_->buf_info (&info, audiofreq_, audiobits_, audiochannels_); return info.bytes > 0; } else return true; } bool fhandler_dev_dsp::write_ready () { return base ()->_write_ready (); } bool fhandler_dev_dsp::read_ready () { return base ()->_read_ready (); }