/* * Copyright (c) 2012, 2013 ARM Ltd * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the company may not be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* Implementation of <> <> <> <>, optional * as to be reenterable. * * Interface documentation refer to malloc.c. */ #include #include #include #include #include #if DEBUG #include #else #undef assert #define assert(x) ((void)0) #endif #ifndef MAX #define MAX(a,b) ((a) >= (b) ? (a) : (b)) #endif #define _SBRK_R(X) _sbrk_r(X) #ifdef _LIBC #include #include #define RARG struct _reent *reent_ptr, #define RONEARG struct _reent *reent_ptr #define RCALL reent_ptr, #define RONECALL reent_ptr #define MALLOC_LOCK __malloc_lock(reent_ptr) #define MALLOC_UNLOCK __malloc_unlock(reent_ptr) #define RERRNO reent_ptr->_errno #define nano_malloc _malloc_r #define nano_free _free_r #define nano_realloc _realloc_r #define nano_memalign _memalign_r #define nano_valloc _valloc_r #define nano_pvalloc _pvalloc_r #define nano_calloc _calloc_r #define nano_cfree _cfree_r #define nano_malloc_usable_size _malloc_usable_size_r #define nano_malloc_stats _malloc_stats_r #define nano_mallinfo _mallinfo_r #define nano_mallopt _mallopt_r #else /* ! _LIBC */ #define RARG #define RONEARG #define RCALL #define RONECALL #define MALLOC_LOCK #define MALLOC_UNLOCK #define RERRNO errno #define nano_malloc malloc #define nano_free free #define nano_realloc realloc #define nano_memalign memalign #define nano_valloc valloc #define nano_pvalloc pvalloc #define nano_calloc calloc #define nano_cfree cfree #define nano_malloc_usable_size malloc_usable_size #define nano_malloc_stats malloc_stats #define nano_mallinfo mallinfo #define nano_mallopt mallopt #endif /* ! _LIBC */ /* Redefine names to avoid conflict with user names */ #define free_list __malloc_free_list #define sbrk_start __malloc_sbrk_start #define current_mallinfo __malloc_current_mallinfo #define ALIGN_PTR(ptr, align) \ (((ptr) + (align) - (intptr_t)1) & ~((align) - (intptr_t)1)) #define ALIGN_SIZE(size, align) \ (((size) + (align) - (size_t)1) & ~((align) - (size_t)1)) /* Alignment of allocated block */ #define MALLOC_ALIGN (8U) #define CHUNK_ALIGN (sizeof(void*)) #define MALLOC_PADDING ((MAX(MALLOC_ALIGN, CHUNK_ALIGN)) - CHUNK_ALIGN) /* as well as the minimal allocation size * to hold a free pointer */ #define MALLOC_MINSIZE (sizeof(void *)) #define MALLOC_PAGE_ALIGN (0x1000) #define MAX_ALLOC_SIZE (0x80000000U) typedef size_t malloc_size_t; typedef struct malloc_chunk { /* -------------------------------------- * chunk->| size | * -------------------------------------- * | Padding for alignment | * | This includes padding inserted by | * | the compiler (to align fields) and | * | explicit padding inserted by this | * | implementation. If any explicit | * | padding is being used then the | * | sizeof (size) bytes at | * | mem_ptr - CHUNK_OFFSET must be | * | initialized with the negative | * | offset to size. | * -------------------------------------- * mem_ptr->| When allocated: data | * | When freed: pointer to next free | * | chunk | * -------------------------------------- */ /* size of the allocated payload area, including size before CHUNK_OFFSET */ long size; /* since here, the memory is either the next free block, or data load */ struct malloc_chunk * next; }chunk; #define CHUNK_OFFSET ((malloc_size_t)(&(((struct malloc_chunk *)0)->next))) /* size of smallest possible chunk. A memory piece smaller than this size * won't be able to create a chunk */ #define MALLOC_MINCHUNK (CHUNK_OFFSET + MALLOC_PADDING + MALLOC_MINSIZE) /* Forward data declarations */ extern chunk * free_list; extern char * sbrk_start; extern struct mallinfo current_mallinfo; /* Forward function declarations */ extern void * nano_malloc(RARG malloc_size_t); extern void nano_free (RARG void * free_p); extern void nano_cfree(RARG void * ptr); extern void * nano_calloc(RARG malloc_size_t n, malloc_size_t elem); extern void nano_malloc_stats(RONEARG); extern malloc_size_t nano_malloc_usable_size(RARG void * ptr); extern void * nano_realloc(RARG void * ptr, malloc_size_t size); extern void * nano_memalign(RARG size_t align, size_t s); extern int nano_mallopt(RARG int parameter_number, int parameter_value); extern void * nano_valloc(RARG size_t s); extern void * nano_pvalloc(RARG size_t s); static inline chunk * get_chunk_from_ptr(void * ptr) { /* Assume that there is no explicit padding in the chunk, and that the chunk starts at ptr - CHUNK_OFFSET. */ chunk * c = (chunk *)((char *)ptr - CHUNK_OFFSET); /* c->size being negative indicates that there is explicit padding in the chunk. In which case, c->size is currently the negative offset to the true size. */ if (c->size < 0) c = (chunk *)((char *)c + c->size); return c; } #ifdef DEFINE_MALLOC /* List list header of free blocks */ chunk * free_list = NULL; /* Starting point of memory allocated from system */ char * sbrk_start = NULL; /** Function sbrk_aligned * Algorithm: * Use sbrk() to obtain more memory and ensure it is CHUNK_ALIGN aligned * Optimise for the case that it is already aligned - only ask for extra * padding after we know we need it */ static void* sbrk_aligned(RARG malloc_size_t s) { char *p, *align_p; if (sbrk_start == NULL) sbrk_start = _SBRK_R(RCALL 0); p = _SBRK_R(RCALL s); /* sbrk returns -1 if fail to allocate */ if (p == (void *)-1) return p; align_p = (char*)ALIGN_PTR((uintptr_t)p, CHUNK_ALIGN); if (align_p != p) { /* p is not aligned, ask for a few more bytes so that we have s * bytes reserved from align_p. */ p = _SBRK_R(RCALL align_p - p); if (p == (void *)-1) return p; } return align_p; } /** Function nano_malloc * Algorithm: * Walk through the free list to find the first match. If fails to find * one, call sbrk to allocate a new chunk. */ void * nano_malloc(RARG malloc_size_t s) { chunk *p, *r; char * ptr, * align_ptr; int offset; malloc_size_t alloc_size; alloc_size = ALIGN_SIZE(s, CHUNK_ALIGN); /* size of aligned data load */ alloc_size += MALLOC_PADDING; /* padding */ alloc_size += CHUNK_OFFSET; /* size of chunk head */ alloc_size = MAX(alloc_size, MALLOC_MINCHUNK); if (alloc_size >= MAX_ALLOC_SIZE || alloc_size < s) { RERRNO = ENOMEM; return NULL; } MALLOC_LOCK; p = free_list; r = p; while (r) { int rem = r->size - alloc_size; if (rem >= 0) { if (rem >= MALLOC_MINCHUNK) { if (p == r) { /* First item in the list, break it into two chunks * and return the first one */ r->size = alloc_size; free_list = (chunk *)((char *)r + alloc_size); free_list->size = rem; free_list->next = r->next; } else { /* Any other item in the list. Split and return * the first one */ r->size = alloc_size; p->next = (chunk *)((char *)r + alloc_size); p->next->size = rem; p->next->next = r->next; } } /* Find a chunk that is exactly the size or slightly bigger * than requested size, just return this chunk */ else if (p == r) { /* Now it implies p==r==free_list. Move the free_list * to next chunk */ free_list = r->next; } else { /* Normal case. Remove it from free_list */ p->next = r->next; } break; } p=r; r=r->next; } /* Failed to find a appropriate chunk. Ask for more memory */ if (r == NULL) { r = sbrk_aligned(RCALL alloc_size); /* sbrk returns -1 if fail to allocate */ if (r == (void *)-1) { /* sbrk didn't have the requested amount. Let's check * if the last item in the free list is adjacent to the * current heap end (sbrk(0)). In that case, only ask * for the difference in size and merge them */ p = free_list; r = p; while (r) { p=r; r=r->next; } if (p != NULL && (char *)p + p->size == (char *)_SBRK_R(RCALL 0)) { /* The last free item has the heap end as neighbour. * Let's ask for a smaller amount and merge */ alloc_size -= p->size; alloc_size = ALIGN_SIZE(alloc_size, CHUNK_ALIGN); /* size of aligned data load */ alloc_size += MALLOC_PADDING; /* padding */ alloc_size += CHUNK_OFFSET; /* size of chunk head */ alloc_size = MAX(alloc_size, MALLOC_MINCHUNK); if (sbrk_aligned(RCALL alloc_size) != (void *)-1) { p->size += alloc_size; r = p; } else { RERRNO = ENOMEM; MALLOC_UNLOCK; return NULL; } } else { RERRNO = ENOMEM; MALLOC_UNLOCK; return NULL; } } else { r->size = alloc_size; } } MALLOC_UNLOCK; ptr = (char *)r + CHUNK_OFFSET; align_ptr = (char *)ALIGN_PTR((uintptr_t)ptr, MALLOC_ALIGN); offset = align_ptr - ptr; if (offset) { /* Initialize sizeof (malloc_chunk.size) bytes at align_ptr - CHUNK_OFFSET with negative offset to the size field (at the start of the chunk). The negative offset to size from align_ptr - CHUNK_OFFSET is the size of any remaining padding minus CHUNK_OFFSET. This is equivalent to the total size of the padding, because the size of any remaining padding is the total size of the padding minus CHUNK_OFFSET. Note that the size of the padding must be at least CHUNK_OFFSET. The rest of the padding is not initialized. */ *(long *)((char *)r + offset) = -offset; } assert(align_ptr + size <= (char *)r + alloc_size); return align_ptr; } #endif /* DEFINE_MALLOC */ #ifdef DEFINE_FREE #define MALLOC_CHECK_DOUBLE_FREE /** Function nano_free * Implementation of libc free. * Algorithm: * Maintain a global free chunk single link list, headed by global * variable free_list. * When free, insert the to-be-freed chunk into free list. The place to * insert should make sure all chunks are sorted by address from low to * high. Then merge with neighbor chunks if adjacent. */ void nano_free (RARG void * free_p) { chunk * p_to_free; chunk * p, * q; if (free_p == NULL) return; p_to_free = get_chunk_from_ptr(free_p); MALLOC_LOCK; if (free_list == NULL) { /* Set first free list element */ p_to_free->next = free_list; free_list = p_to_free; MALLOC_UNLOCK; return; } if (p_to_free < free_list) { if ((char *)p_to_free + p_to_free->size == (char *)free_list) { /* Chunk to free is just before the first element of * free list */ p_to_free->size += free_list->size; p_to_free->next = free_list->next; } else { /* Insert before current free_list */ p_to_free->next = free_list; } free_list = p_to_free; MALLOC_UNLOCK; return; } q = free_list; /* Walk through the free list to find the place for insert. */ do { p = q; q = q->next; } while (q && q <= p_to_free); /* Now p <= p_to_free and either q == NULL or q > p_to_free * Try to merge with chunks immediately before/after it. */ if ((char *)p + p->size == (char *)p_to_free) { /* Chunk to be freed is adjacent * to a free chunk before it */ p->size += p_to_free->size; /* If the merged chunk is also adjacent * to the chunk after it, merge again */ if ((char *)p + p->size == (char *) q) { p->size += q->size; p->next = q->next; } } #ifdef MALLOC_CHECK_DOUBLE_FREE else if ((char *)p + p->size > (char *)p_to_free) { /* Report double free fault */ RERRNO = ENOMEM; MALLOC_UNLOCK; return; } #endif else if ((char *)p_to_free + p_to_free->size == (char *) q) { /* Chunk to be freed is adjacent * to a free chunk after it */ p_to_free->size += q->size; p_to_free->next = q->next; p->next = p_to_free; } else { /* Not adjacent to any chunk. Just insert it. Resulting * a fragment. */ p_to_free->next = q; p->next = p_to_free; } MALLOC_UNLOCK; } #endif /* DEFINE_FREE */ #ifdef DEFINE_CFREE void nano_cfree(RARG void * ptr) { nano_free(RCALL ptr); } #endif /* DEFINE_CFREE */ #ifdef DEFINE_CALLOC /* Function nano_calloc * Implement calloc simply by calling malloc and set zero */ void * nano_calloc(RARG malloc_size_t n, malloc_size_t elem) { malloc_size_t bytes; void * mem; if (__builtin_mul_overflow (n, elem, &bytes)) { RERRNO = ENOMEM; return NULL; } mem = nano_malloc(RCALL bytes); if (mem != NULL) memset(mem, 0, bytes); return mem; } #endif /* DEFINE_CALLOC */ #ifdef DEFINE_REALLOC /* Function nano_realloc * Implement realloc by malloc + memcpy */ void * nano_realloc(RARG void * ptr, malloc_size_t size) { void * mem; chunk * p_to_realloc; malloc_size_t old_size; if (ptr == NULL) return nano_malloc(RCALL size); if (size == 0) { nano_free(RCALL ptr); return NULL; } old_size = nano_malloc_usable_size(RCALL ptr); if (size <= old_size && (old_size >> 1) < size) return ptr; mem = nano_malloc(RCALL size); if (mem != NULL) { if (old_size > size) old_size = size; memcpy(mem, ptr, old_size); nano_free(RCALL ptr); } return mem; } #endif /* DEFINE_REALLOC */ #ifdef DEFINE_MALLINFO struct mallinfo current_mallinfo={0,0,0,0,0,0,0,0,0,0}; struct mallinfo nano_mallinfo(RONEARG) { char * sbrk_now; chunk * pf; size_t free_size = 0; size_t total_size; MALLOC_LOCK; if (sbrk_start == NULL) total_size = 0; else { sbrk_now = _SBRK_R(RCALL 0); if (sbrk_now == (void *)-1) total_size = (size_t)-1; else total_size = (size_t) (sbrk_now - sbrk_start); } for (pf = free_list; pf; pf = pf->next) free_size += pf->size; current_mallinfo.arena = total_size; current_mallinfo.fordblks = free_size; current_mallinfo.uordblks = total_size - free_size; MALLOC_UNLOCK; return current_mallinfo; } #endif /* DEFINE_MALLINFO */ #ifdef DEFINE_MALLOC_STATS void nano_malloc_stats(RONEARG) { nano_mallinfo(RONECALL); fiprintf(stderr, "max system bytes = %10u\n", current_mallinfo.arena); fiprintf(stderr, "system bytes = %10u\n", current_mallinfo.arena); fiprintf(stderr, "in use bytes = %10u\n", current_mallinfo.uordblks); } #endif /* DEFINE_MALLOC_STATS */ #ifdef DEFINE_MALLOC_USABLE_SIZE malloc_size_t nano_malloc_usable_size(RARG void * ptr) { chunk * c = (chunk *)((char *)ptr - CHUNK_OFFSET); int size_or_offset = c->size; if (size_or_offset < 0) { /* Padding is used. Excluding the padding size */ c = (chunk *)((char *)c + c->size); return c->size - CHUNK_OFFSET + size_or_offset; } return c->size - CHUNK_OFFSET; } #endif /* DEFINE_MALLOC_USABLE_SIZE */ #ifdef DEFINE_MEMALIGN /* Function nano_memalign * Allocate memory block aligned at specific boundary. * align: required alignment. Must be power of 2. Return NULL * if not power of 2. Undefined behavior is bigger than * pointer value range. * s: required size. * Return: allocated memory pointer aligned to align * Algorithm: Malloc a big enough block, padding pointer to aligned * address, then truncate and free the tail if too big. * Record the offset of align pointer and original pointer * in the padding area. */ void * nano_memalign(RARG size_t align, size_t s) { chunk * chunk_p; malloc_size_t size_allocated, offset, ma_size, size_with_padding; char * allocated, * aligned_p; /* Return NULL if align isn't power of 2 */ if ((align & (align-1)) != 0) return NULL; align = MAX(align, MALLOC_ALIGN); /* Make sure ma_size does not overflow */ if (s > __SIZE_MAX__ - CHUNK_ALIGN) { RERRNO = ENOMEM; return NULL; } ma_size = ALIGN_SIZE(MAX(s, MALLOC_MINSIZE), CHUNK_ALIGN); /* Make sure size_with_padding does not overflow */ if (ma_size > __SIZE_MAX__ - (align - MALLOC_ALIGN)) { RERRNO = ENOMEM; return NULL; } size_with_padding = ma_size + (align - MALLOC_ALIGN); allocated = nano_malloc(RCALL size_with_padding); if (allocated == NULL) return NULL; chunk_p = get_chunk_from_ptr(allocated); aligned_p = (char *)ALIGN_PTR( (uintptr_t)((char *)chunk_p + CHUNK_OFFSET), (uintptr_t)align); offset = aligned_p - ((char *)chunk_p + CHUNK_OFFSET); if (offset) { if (offset >= MALLOC_MINCHUNK) { /* Padding is too large, free it */ chunk * front_chunk = chunk_p; chunk_p = (chunk *)((char *)chunk_p + offset); chunk_p->size = front_chunk->size - offset; front_chunk->size = offset; nano_free(RCALL (char *)front_chunk + CHUNK_OFFSET); } else { /* Padding is used. Need to set a jump offset for aligned pointer * to get back to chunk head */ assert(offset >= sizeof(int)); *(long *)((char *)chunk_p + offset) = -offset; } } size_allocated = chunk_p->size; if ((char *)chunk_p + size_allocated > (aligned_p + ma_size + MALLOC_MINCHUNK)) { /* allocated much more than what's required for padding, free * tail part */ chunk * tail_chunk = (chunk *)(aligned_p + ma_size); chunk_p->size = aligned_p + ma_size - (char *)chunk_p; tail_chunk->size = size_allocated - chunk_p->size; nano_free(RCALL (char *)tail_chunk + CHUNK_OFFSET); } return aligned_p; } #endif /* DEFINE_MEMALIGN */ #ifdef DEFINE_MALLOPT int nano_mallopt(RARG int parameter_number, int parameter_value) { return 0; } #endif /* DEFINE_MALLOPT */ #ifdef DEFINE_VALLOC void * nano_valloc(RARG size_t s) { return nano_memalign(RCALL MALLOC_PAGE_ALIGN, s); } #endif /* DEFINE_VALLOC */ #ifdef DEFINE_PVALLOC void * nano_pvalloc(RARG size_t s) { /* Make sure size given to nano_valloc does not overflow */ if (s > __SIZE_MAX__ - MALLOC_PAGE_ALIGN) { RERRNO = ENOMEM; return NULL; } return nano_valloc(RCALL ALIGN_SIZE(s, MALLOC_PAGE_ALIGN)); } #endif /* DEFINE_PVALLOC */