/* * Copyright 2023 Siemens * * The authors hereby grant permission to use, copy, modify, distribute, * and license this software and its documentation for any purpose, provided * that existing copyright notices are retained in all copies and that this * notice is included verbatim in any distributions. No written agreement, * license, or royalty fee is required for any of the authorized uses. * Modifications to this software may be copyrighted by their authors * and need not follow the licensing terms described here, provided that * the new terms are clearly indicated on the first page of each file where * they apply. */ /* * Copyright (c) 1994-2009 Red Hat, Inc. All rights reserved. * * This copyrighted material is made available to anyone wishing to use, * modify, copy, or redistribute it subject to the terms and conditions * of the BSD License. This program is distributed in the hope that * it will be useful, but WITHOUT ANY WARRANTY expressed or implied, * including the implied warranties of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. A copy of this license is available at * http://www.opensource.org/licenses. Any Red Hat trademarks that are * incorporated in the source code or documentation are not subject to * the BSD License and may only be used or replicated with the express * permission of Red Hat, Inc. */ /***************************************************************** * The following routines are coded directly from the algorithms * and coefficients given in "Software Manual for the Elementary * Functions" by William J. Cody, Jr. and William Waite, Prentice * Hall, 1980. *****************************************************************/ /* Based on newlib/libm/mathfp/sf_tanh.c in Newlib. */ #include "amdgcnmach.h" v64sf v64sf_expf_aux (v64sf, v64si); static const float LN3_OVER2 = 0.54930614433405484570; static const float p[] = { -0.16134119023996228053e+4, -0.99225929672236083313e+2, -0.96437492777225469787 }; static const float q[] = { 0.48402357071988688686e+4, 0.22337720718962312926e+4, 0.11274474380534949335e+3 }; #if defined (__has_builtin) && __has_builtin (__builtin_gcn_fabsvf) DEF_VS_MATH_FUNC (v64sf, tanhf, v64sf x) { FUNCTION_INIT (v64sf); v64sf f = __builtin_gcn_fabsvf (x); v64sf res; /* Check if the input is too big. */ VECTOR_IF (f > (float) BIGX, cond) VECTOR_COND_MOVE (res, VECTOR_INIT (1.0f), cond); VECTOR_ELSEIF (f > LN3_OVER2, cond) VECTOR_COND_MOVE (res, 1.0f - 2.0f / (v64sf_expf_aux (2.0f * f, __mask) + 1.0f), cond); /* Check if the input is too small. */ VECTOR_ELSEIF (f < z_rooteps_f, cond) VECTOR_COND_MOVE (res, f, cond); /* Calculate the Taylor series. */ VECTOR_ELSE (cond) v64sf g = f * f; v64sf P = (p[2] * g + p[1]) * g + p[0]; v64sf Q = ((g + q[2]) * g + q[1]) * g + q[0]; v64sf R = g * (P / Q); VECTOR_COND_MOVE (res, f + f * R, cond); VECTOR_ENDIF VECTOR_COND_MOVE (res, -res, x < 0.0f); VECTOR_RETURN (res, NO_COND); FUNCTION_RETURN; } DEF_VARIANTS (tanhf, sf, sf) #endif