/* * Copyright 2023 Siemens * * The authors hereby grant permission to use, copy, modify, distribute, * and license this software and its documentation for any purpose, provided * that existing copyright notices are retained in all copies and that this * notice is included verbatim in any distributions. No written agreement, * license, or royalty fee is required for any of the authorized uses. * Modifications to this software may be copyrighted by their authors * and need not follow the licensing terms described here, provided that * the new terms are clearly indicated on the first page of each file where * they apply. */ /* * Copyright (c) 1994-2009 Red Hat, Inc. All rights reserved. * * This copyrighted material is made available to anyone wishing to use, * modify, copy, or redistribute it subject to the terms and conditions * of the BSD License. This program is distributed in the hope that * it will be useful, but WITHOUT ANY WARRANTY expressed or implied, * including the implied warranties of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. A copy of this license is available at * http://www.opensource.org/licenses. Any Red Hat trademarks that are * incorporated in the source code or documentation are not subject to * the BSD License and may only be used or replicated with the express * permission of Red Hat, Inc. */ /****************************************************************** * The following routines are coded directly from the algorithms * and coefficients given in "Software Manual for the Elementary * Functions" by William J. Cody, Jr. and William Waite, Prentice * Hall, 1980. ******************************************************************/ /* Based on newlib/libm/mathfp/s_exp.c in Newlib. */ #include "amdgcnmach.h" v64si v64df_ispos (v64df); v64si v64df_numtest (v64df); static const double INV_LN2 = 1.4426950408889634074; static const double LN2 = 0.6931471805599453094172321; static const double p[] = { 0.25, 0.75753180159422776666e-2, 0.31555192765684646356e-4 }; static const double q[] = { 0.5, 0.56817302698551221787e-1, 0.63121894374398504557e-3, 0.75104028399870046114e-6 }; #if defined (__has_builtin) && __has_builtin (__builtin_gcn_ldexpv) DEF_VD_MATH_FUNC (v64df, exp, v64df x) { FUNCTION_INIT (v64df); v64si num_type = v64df_numtest (x); VECTOR_IF (num_type == NAN, cond) errno = EDOM; VECTOR_RETURN (x, cond); VECTOR_ELSEIF (num_type == INF, cond) errno = ERANGE; VECTOR_RETURN (VECTOR_MERGE (VECTOR_INIT (z_infinity.d), VECTOR_INIT (0.0), v64df_ispos (x)), cond); VECTOR_ELSEIF (num_type == 0, cond) VECTOR_RETURN (VECTOR_INIT (1.0), cond); VECTOR_ENDIF /* Check for out of bounds. */ VECTOR_IF ((x > BIGX) | (x < SMALLX), cond) errno = ERANGE; VECTOR_RETURN (x, cond); VECTOR_ENDIF /* Check for a value too small to calculate. */ VECTOR_RETURN (VECTOR_INIT (1.0), (-z_rooteps_f < x) & (x < z_rooteps_f)); /* Calculate the exponent. */ v64si Nneg = __builtin_convertvector (x * INV_LN2 - 0.5, v64si); v64si Npos = __builtin_convertvector (x * INV_LN2 + 0.5, v64si); v64si N = VECTOR_MERGE (Nneg, Npos, x < 0.0); /* Construct the mantissa. */ v64df g = x - __builtin_convertvector (N, v64df) * LN2; v64df z = g * g; v64df P = g * ((p[2] * z + p[1]) * z + p[0]); v64df Q = ((q[3] * z + q[2]) * z + q[1]) * z + q[0]; v64df R = 0.5 + P / (Q - P); /* Return the floating point value. */ N++; VECTOR_RETURN (__builtin_gcn_ldexpv (R, N), NO_COND); FUNCTION_RETURN; } DEF_VARIANTS (exp, df, df) #endif