/* * Copyright 2023 Siemens * * The authors hereby grant permission to use, copy, modify, distribute, * and license this software and its documentation for any purpose, provided * that existing copyright notices are retained in all copies and that this * notice is included verbatim in any distributions. No written agreement, * license, or royalty fee is required for any of the authorized uses. * Modifications to this software may be copyrighted by their authors * and need not follow the licensing terms described here, provided that * the new terms are clearly indicated on the first page of each file where * they apply. */ /* * Copyright (c) 1994-2009 Red Hat, Inc. All rights reserved. * * This copyrighted material is made available to anyone wishing to use, * modify, copy, or redistribute it subject to the terms and conditions * of the BSD License. This program is distributed in the hope that * it will be useful, but WITHOUT ANY WARRANTY expressed or implied, * including the implied warranties of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. A copy of this license is available at * http://www.opensource.org/licenses. Any Red Hat trademarks that are * incorporated in the source code or documentation are not subject to * the BSD License and may only be used or replicated with the express * permission of Red Hat, Inc. */ /****************************************************************** * The following routines are coded directly from the algorithms * and coefficients given in "Software Manual for the Elementary * Functions" by William J. Cody, Jr. and William Waite, Prentice * Hall, 1980. ******************************************************************/ /* Based on newlib/libm/mathfp/s_asine.c in Newlib. */ #include "amdgcnmach.h" v64si v64df_numtest (v64df); v64df v64df_sqrt_aux (v64df, v64di); static const double p[] = { -0.27368494524164255994e+2, 0.57208227877891731407e+2, -0.39688862997404877339e+2, 0.10152522233806463645e+2, -0.69674573447350646411 }; static const double q[] = { -0.16421096714498560795e+3, 0.41714430248260412556e+3, -0.38186303361750149284e+3, 0.15095270841030604719e+3, -0.23823859153670238830e+2 }; static const double a[] = { 0.0, 0.78539816339744830962 }; static const double b[] = { 1.57079632679489661923, 0.78539816339744830962 }; #if defined (__has_builtin) && __has_builtin (__builtin_gcn_fabsv) DEF_VD_MATH_FUNC (v64df, asine, v64df x, int acosine) { FUNCTION_INIT (v64df); v64si branch = VECTOR_INIT (0); /* Check for special values. */ v64si i = v64df_numtest (x); VECTOR_IF ((i == NAN) | (i == INF), cond) errno = EDOM; VECTOR_RETURN (VECTOR_MERGE (x, VECTOR_INIT (z_infinity.d), i == NAN), cond); VECTOR_ENDIF v64df y = __builtin_gcn_fabsv (x); v64df g, res; VECTOR_IF (y > 0.5, cond) VECTOR_COND_MOVE (i, VECTOR_INIT (1 - acosine), cond); /* Check for range error. */ VECTOR_IF2 (y > 1.0, cond2, cond) errno = ERANGE; VECTOR_RETURN (VECTOR_INIT (z_notanum.d), cond2); VECTOR_ENDIF VECTOR_COND_MOVE (g, (1.0 - y) / 2.0, cond); VECTOR_COND_MOVE (y, -2.0 * v64df_sqrt_aux (g, __mask), cond); VECTOR_COND_MOVE (branch, VECTOR_INIT (-1), cond); VECTOR_ELSE (cond) VECTOR_COND_MOVE (i, VECTOR_INIT (acosine), cond); VECTOR_IF2 (y < z_rooteps, cond2, cond) VECTOR_COND_MOVE (res, y, cond2); VECTOR_ELSE2 (cond2, cond) VECTOR_COND_MOVE (g, y * y, cond2); VECTOR_ENDIF VECTOR_ENDIF VECTOR_IF ((y >= z_rooteps) | __builtin_convertvector(branch, v64di), cond) { /* Calculate the Taylor series. */ v64df P = ((((p[4] * g + p[3]) * g + p[2]) * g + p[1]) * g + p[0]) * g; v64df Q = ((((g + q[4]) * g + q[3]) * g + q[2]) * g + q[1]) * g + q[0]; v64df R = P / Q; VECTOR_COND_MOVE (res, y + y * R, cond); } VECTOR_ENDIF v64df a_i = VECTOR_MERGE (VECTOR_INIT (a[1]), VECTOR_INIT (a[0]), i != 0); /* Calculate asine or acose. */ if (acosine == 0) { VECTOR_COND_MOVE (res, (a_i + res) + a_i, NO_COND); VECTOR_IF (x < 0.0, cond) VECTOR_COND_MOVE (res, -res, cond); VECTOR_ENDIF } else { v64df b_i = VECTOR_MERGE (VECTOR_INIT(b[1]), VECTOR_INIT(b[0]), i != 0); VECTOR_IF (x < 0.0, cond) VECTOR_COND_MOVE (res, (b_i + res) + b_i, cond); VECTOR_ELSE (cond) VECTOR_COND_MOVE (res, (a_i - res) + a_i, cond); VECTOR_ENDIF } VECTOR_RETURN (res, NO_COND); FUNCTION_RETURN; } #endif