/* * Copyright 2023 Siemens * * The authors hereby grant permission to use, copy, modify, distribute, * and license this software and its documentation for any purpose, provided * that existing copyright notices are retained in all copies and that this * notice is included verbatim in any distributions. No written agreement, * license, or royalty fee is required for any of the authorized uses. * Modifications to this software may be copyrighted by their authors * and need not follow the licensing terms described here, provided that * the new terms are clearly indicated on the first page of each file where * they apply. */ /* * Copyright (c) 1994-2009 Red Hat, Inc. All rights reserved. * * This copyrighted material is made available to anyone wishing to use, * modify, copy, or redistribute it subject to the terms and conditions * of the BSD License. This program is distributed in the hope that * it will be useful, but WITHOUT ANY WARRANTY expressed or implied, * including the implied warranties of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. A copy of this license is available at * http://www.opensource.org/licenses. Any Red Hat trademarks that are * incorporated in the source code or documentation are not subject to * the BSD License and may only be used or replicated with the express * permission of Red Hat, Inc. */ /****************************************************************** * The following routines are coded directly from the algorithms * and coefficients given in "Software Manual for the Elementary * Functions" by William J. Cody, Jr. and William Waite, Prentice * Hall, 1980. ******************************************************************/ /* Based on newlib/libm/mathfp/s_sineh.c in Newlib. */ #include "amdgcnmach.h" v64df v64df_exp_aux (v64df, v64di); v64si v64df_numtest (v64df); v64si v64df_ispos (v64df); static const double q[] = { -0.21108770058106271242e+7, 0.36162723109421836460e+5, -0.27773523119650701667e+3 }; static const double p[] = { -0.35181283430177117881e+6, -0.11563521196851768270e+5, -0.16375798202630751372e+3, -0.78966127417357099479 }; static const double LNV = 0.6931610107421875000; static const double INV_V2 = 0.24999308500451499336; static const double V_OVER2_MINUS1 = 0.13830277879601902638e-4; #if defined (__has_builtin) && __has_builtin (__builtin_gcn_fabsv) DEF_VD_MATH_FUNC (v64df, sineh, v64df x, int cosineh) { const double WBAR = 18.55; FUNCTION_INIT (v64df); v64si sgn = VECTOR_INIT (0); v64di v_cosineh = VECTOR_INIT (cosineh ? -1L : 0L); /* Check for special values. */ v64si num_type = v64df_numtest (x); VECTOR_IF (num_type == NAN, cond) errno = EDOM; VECTOR_RETURN (x, cond); VECTOR_ELSEIF (num_type == INF, cond) errno = ERANGE; VECTOR_RETURN (VECTOR_MERGE (VECTOR_INIT (z_infinity.d), VECTOR_INIT (-z_infinity.d), v64df_ispos (x)), cond); VECTOR_ENDIF v64df y = __builtin_gcn_fabsv (x); if (!cosineh) VECTOR_COND_MOVE (sgn, VECTOR_INIT (-1), x < 0.0); v64df res; VECTOR_IF (((y > 1.0) & ~v_cosineh) | v_cosineh, cond) VECTOR_IF2 (y > BIGX, cond2, cond) v64df w = y - LNV; /* Check for w > maximum here. */ VECTOR_IF2 (w > BIGX, cond3, cond2) errno = ERANGE; VECTOR_RETURN (x, cond3); VECTOR_ENDIF v64df z = v64df_exp_aux (w, __mask); VECTOR_COND_MOVE (res, z * (V_OVER2_MINUS1 + 1.0), cond2 & (w > WBAR)); VECTOR_ELSE2 (cond2, cond) v64df z = v64df_exp_aux (y, __mask); if (cosineh) VECTOR_COND_MOVE (res, (z + 1 / z) * 0.5, cond2); else VECTOR_COND_MOVE (res, (z - 1 / z) * 0.5, cond2); VECTOR_ENDIF VECTOR_COND_MOVE (res, -res, sgn); VECTOR_ELSE (cond) /* Check for y being too small. */ VECTOR_IF2 (y < z_rooteps, cond2, cond); VECTOR_COND_MOVE (res, x, cond2); VECTOR_ELSE2 (cond2, cond) /* Calculate the Taylor series. */ v64df f = x * x; v64df Q = ((f + q[2]) * f + q[1]) * f + q[0]; v64df P = ((p[3] * f + p[2]) * f + p[1]) * f + p[0]; v64df R = f * (P / Q); VECTOR_COND_MOVE (res, x + x * R, cond2); VECTOR_ENDIF VECTOR_ENDIF VECTOR_RETURN (res, NO_COND); FUNCTION_RETURN; } #endif