/* * strcmp - compare two strings * * Copyright (c) 2012-2022, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #if (defined (__OPTIMIZE_SIZE__) || defined (PREFER_SIZE_OVER_SPEED)) /* See strcmp-stub.c */ #else /* Assumptions: * * ARMv8-a, AArch64. * MTE compatible. */ #include "asmdefs.h" #define REP8_01 0x0101010101010101 #define REP8_7f 0x7f7f7f7f7f7f7f7f #define src1 x0 #define src2 x1 #define result x0 #define data1 x2 #define data1w w2 #define data2 x3 #define data2w w3 #define has_nul x4 #define diff x5 #define off1 x5 #define syndrome x6 #define tmp x6 #define data3 x7 #define zeroones x8 #define shift x9 #define off2 x10 /* On big-endian early bytes are at MSB and on little-endian LSB. LS_FW means shifting towards early bytes. */ #ifdef __AARCH64EB__ # define LS_FW lsl #else # define LS_FW lsr #endif /* NUL detection works on the principle that (X - 1) & (~X) & 0x80 (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and can be done in parallel across the entire word. Since carry propagation makes 0x1 bytes before a NUL byte appear NUL too in big-endian, byte-reverse the data before the NUL check. */ ENTRY (strcmp) PTR_ARG (0) PTR_ARG (1) sub off2, src2, src1 mov zeroones, REP8_01 and tmp, src1, 7 tst off2, 7 b.ne L(misaligned8) cbnz tmp, L(mutual_align) .p2align 4 L(loop_aligned): ldr data2, [src1, off2] ldr data1, [src1], 8 L(start_realigned): #ifdef __AARCH64EB__ rev tmp, data1 sub has_nul, tmp, zeroones orr tmp, tmp, REP8_7f #else sub has_nul, data1, zeroones orr tmp, data1, REP8_7f #endif bics has_nul, has_nul, tmp /* Non-zero if NUL terminator. */ ccmp data1, data2, 0, eq b.eq L(loop_aligned) #ifdef __AARCH64EB__ rev has_nul, has_nul #endif eor diff, data1, data2 orr syndrome, diff, has_nul L(end): #ifndef __AARCH64EB__ rev syndrome, syndrome rev data1, data1 rev data2, data2 #endif clz shift, syndrome /* The most-significant-non-zero bit of the syndrome marks either the first bit that is different, or the top bit of the first zero byte. Shifting left now will bring the critical information into the top bits. */ lsl data1, data1, shift lsl data2, data2, shift /* But we need to zero-extend (char is unsigned) the value and then perform a signed 32-bit subtraction. */ lsr data1, data1, 56 sub result, data1, data2, lsr 56 ret .p2align 4 L(mutual_align): /* Sources are mutually aligned, but are not currently at an alignment boundary. Round down the addresses and then mask off the bytes that precede the start point. */ bic src1, src1, 7 ldr data2, [src1, off2] ldr data1, [src1], 8 neg shift, src2, lsl 3 /* Bits to alignment -64. */ mov tmp, -1 LS_FW tmp, tmp, shift orr data1, data1, tmp orr data2, data2, tmp b L(start_realigned) L(misaligned8): /* Align SRC1 to 8 bytes and then compare 8 bytes at a time, always checking to make sure that we don't access beyond the end of SRC2. */ cbz tmp, L(src1_aligned) L(do_misaligned): ldrb data1w, [src1], 1 ldrb data2w, [src2], 1 cmp data1w, 0 ccmp data1w, data2w, 0, ne /* NZCV = 0b0000. */ b.ne L(done) tst src1, 7 b.ne L(do_misaligned) L(src1_aligned): neg shift, src2, lsl 3 bic src2, src2, 7 ldr data3, [src2], 8 #ifdef __AARCH64EB__ rev data3, data3 #endif lsr tmp, zeroones, shift orr data3, data3, tmp sub has_nul, data3, zeroones orr tmp, data3, REP8_7f bics has_nul, has_nul, tmp b.ne L(tail) sub off1, src2, src1 .p2align 4 L(loop_unaligned): ldr data3, [src1, off1] ldr data2, [src1, off2] #ifdef __AARCH64EB__ rev data3, data3 #endif sub has_nul, data3, zeroones orr tmp, data3, REP8_7f ldr data1, [src1], 8 bics has_nul, has_nul, tmp ccmp data1, data2, 0, eq b.eq L(loop_unaligned) lsl tmp, has_nul, shift #ifdef __AARCH64EB__ rev tmp, tmp #endif eor diff, data1, data2 orr syndrome, diff, tmp cbnz syndrome, L(end) L(tail): ldr data1, [src1] neg shift, shift lsr data2, data3, shift lsr has_nul, has_nul, shift #ifdef __AARCH64EB__ rev data2, data2 rev has_nul, has_nul #endif eor diff, data1, data2 orr syndrome, diff, has_nul b L(end) L(done): sub result, data1, data2 ret END (strcmp) #endif