/* thread.cc: Locking and threading module functions This file is part of Cygwin. This software is a copyrighted work licensed under the terms of the Cygwin license. Please consult the file "CYGWIN_LICENSE" for details. */ /* Implementation overview and caveats: Win32 puts some contraints on what can and cannot be implemented. Where possible we work around those contrainsts. Where we cannot work around the constraints we either pretend to be conformant, or return an error code. Some caveats: PROCESS_SHARED objects, while they pretend to be process shared, may not actually work. Some test cases are needed to determine win32's behaviour. My suspicion is that the win32 handle needs to be opened with different flags for proper operation. R.Collins, April 2001. */ #include "winsup.h" #include "miscfuncs.h" #include "path.h" #include #include #include "sigproc.h" #include "fhandler.h" #include "dtable.h" #include "cygheap.h" #include "ntdll.h" #include "cygwait.h" #include "exception.h" extern "C" void __fp_lock_all (); extern "C" void __fp_unlock_all (); extern "C" bool valid_sched_parameters(const struct sched_param *); extern "C" int sched_get_thread_priority(HANDLE thread); extern "C" int sched_set_thread_priority(HANDLE thread, int priority); static inline verifyable_object_state verifyable_object_isvalid (void const * objectptr, thread_magic_t magic, void *static_ptr1 = NULL, void *static_ptr2 = NULL, void *static_ptr3 = NULL); extern int threadsafe; const pthread_t pthread_mutex::_new_mutex = (pthread_t) 1; const pthread_t pthread_mutex::_unlocked_mutex = (pthread_t) 2; const pthread_t pthread_mutex::_destroyed_mutex = (pthread_t) 3; template static inline void delete_and_clear (T * * const ptr) { delete *ptr; *ptr = 0; } inline bool pthread_mutex::no_owner() { int res; if (!owner) { debug_printf ("NULL owner value"); res = 1; } else if (owner == _destroyed_mutex) { paranoid_printf ("attempt to use destroyed mutex"); res = 1; } else if (owner == _new_mutex || owner == _unlocked_mutex) res = 1; else res = 0; return res; } #undef __getreent extern "C" struct _reent * __getreent () { return &_my_tls.local_clib; } extern "C" void __cygwin_lock_init (_LOCK_T *lock) { *lock = _LOCK_T_INITIALIZER; } extern "C" void __cygwin_lock_init_recursive (_LOCK_T *lock) { *lock = _LOCK_T_RECURSIVE_INITIALIZER; } extern "C" void __cygwin_lock_fini (_LOCK_T *lock) { pthread_mutex_destroy ((pthread_mutex_t*) lock); } extern "C" void __cygwin_lock_lock (_LOCK_T *lock) { paranoid_printf ("threadcount %d. locking", MT_INTERFACE->threadcount); pthread_mutex_lock ((pthread_mutex_t*) lock); } extern "C" int __cygwin_lock_trylock (_LOCK_T *lock) { return pthread_mutex_trylock ((pthread_mutex_t*) lock); } extern "C" void __cygwin_lock_unlock (_LOCK_T *lock) { pthread_mutex_unlock ((pthread_mutex_t*) lock); paranoid_printf ("threadcount %d. unlocked", MT_INTERFACE->threadcount); } static inline verifyable_object_state verifyable_object_isvalid (void const *objectptr, thread_magic_t magic, void *static_ptr1, void *static_ptr2, void *static_ptr3) { verifyable_object_state state = INVALID_OBJECT; __try { if (!objectptr || !(*(const char **) objectptr)) __leave; verifyable_object **object = (verifyable_object **) objectptr; if ((static_ptr1 && *object == static_ptr1) || (static_ptr2 && *object == static_ptr2) || (static_ptr3 && *object == static_ptr3)) state = VALID_STATIC_OBJECT; else if ((*object)->magic == magic) state = VALID_OBJECT; } __except (NO_ERROR) {} __endtry return state; } /* static members */ inline bool pthread_attr::is_good_object (pthread_attr_t const *attr) { if (verifyable_object_isvalid (attr, PTHREAD_ATTR_MAGIC) != VALID_OBJECT) return false; return true; } inline bool pthread_condattr::is_good_object (pthread_condattr_t const *attr) { if (verifyable_object_isvalid (attr, PTHREAD_CONDATTR_MAGIC) != VALID_OBJECT) return false; return true; } inline bool pthread_rwlockattr::is_good_object (pthread_rwlockattr_t const *attr) { if (verifyable_object_isvalid (attr, PTHREAD_RWLOCKATTR_MAGIC) != VALID_OBJECT) return false; return true; } inline bool pthread_key::is_good_object (pthread_key_t const *key) { if (verifyable_object_isvalid (key, PTHREAD_KEY_MAGIC) != VALID_OBJECT) return false; return true; } inline bool pthread_spinlock::is_good_object (pthread_spinlock_t const *mutex) { if (verifyable_object_isvalid (mutex, PTHREAD_SPINLOCK_MAGIC) != VALID_OBJECT) return false; return true; } inline bool pthread_mutex::is_good_object (pthread_mutex_t const *mutex) { if (verifyable_object_isvalid (mutex, PTHREAD_MUTEX_MAGIC) != VALID_OBJECT) return false; return true; } inline bool pthread_mutex::is_initializer (pthread_mutex_t const *mutex) { if (verifyable_object_isvalid (mutex, PTHREAD_MUTEX_MAGIC, PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP, PTHREAD_NORMAL_MUTEX_INITIALIZER_NP, PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP) != VALID_STATIC_OBJECT) return false; return true; } inline bool pthread_mutex::is_initializer_or_object (pthread_mutex_t const *mutex) { if (verifyable_object_isvalid (mutex, PTHREAD_MUTEX_MAGIC, PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP, PTHREAD_NORMAL_MUTEX_INITIALIZER_NP, PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP) == INVALID_OBJECT) return false; return true; } /* FIXME: Accommodate PTHREAD_MUTEX_ERRORCHECK */ inline bool pthread_mutex::can_be_unlocked () { pthread_t self = pthread::self (); /* Check if the mutex is owned by the current thread and can be unlocked. * Also check for the ANONYMOUS owner to cover NORMAL mutexes as well. */ bool res = type == PTHREAD_MUTEX_NORMAL || no_owner () || (recursion_counter == 1 && pthread::equal (owner, self)); pthread_printf ("recursion_counter %u res %d", recursion_counter, res); return res; } inline bool pthread_mutexattr::is_good_object (pthread_mutexattr_t const * attr) { if (verifyable_object_isvalid (attr, PTHREAD_MUTEXATTR_MAGIC) != VALID_OBJECT) return false; return true; } inline bool __attribute__ ((used)) pthread::is_good_object (pthread_t const *thread) { if (verifyable_object_isvalid (thread, PTHREAD_MAGIC) != VALID_OBJECT) return false; return true; } /* Thread synchronisation */ inline bool pthread_cond::is_good_object (pthread_cond_t const *cond) { if (verifyable_object_isvalid (cond, PTHREAD_COND_MAGIC) != VALID_OBJECT) return false; return true; } inline bool pthread_cond::is_initializer (pthread_cond_t const *cond) { if (verifyable_object_isvalid (cond, PTHREAD_COND_MAGIC, PTHREAD_COND_INITIALIZER) != VALID_STATIC_OBJECT) return false; return true; } inline bool pthread_cond::is_initializer_or_object (pthread_cond_t const *cond) { if (verifyable_object_isvalid (cond, PTHREAD_COND_MAGIC, PTHREAD_COND_INITIALIZER) == INVALID_OBJECT) return false; return true; } inline bool pthread_barrierattr::is_good_object (pthread_barrierattr_t const *cond) { if (verifyable_object_isvalid (cond, PTHREAD_BARRIERATTR_MAGIC) != VALID_OBJECT) return false; return true; } inline bool pthread_barrier::is_good_object (pthread_barrier_t const *cond) { if (verifyable_object_isvalid (cond, PTHREAD_BARRIER_MAGIC) != VALID_OBJECT) return false; return true; } /* RW locks */ inline bool pthread_rwlock::is_good_object (pthread_rwlock_t const *rwlock) { if (verifyable_object_isvalid (rwlock, PTHREAD_RWLOCK_MAGIC) != VALID_OBJECT) return false; return true; } inline bool pthread_rwlock::is_initializer (pthread_rwlock_t const *rwlock) { if (verifyable_object_isvalid (rwlock, PTHREAD_RWLOCK_MAGIC, PTHREAD_RWLOCK_INITIALIZER) != VALID_STATIC_OBJECT) return false; return true; } inline bool pthread_rwlock::is_initializer_or_object (pthread_rwlock_t const *rwlock) { if (verifyable_object_isvalid (rwlock, PTHREAD_RWLOCK_MAGIC, PTHREAD_RWLOCK_INITIALIZER) == INVALID_OBJECT) return false; return true; } inline bool semaphore::is_good_object (sem_t const * sem) { if (verifyable_object_isvalid (sem, SEM_MAGIC) != VALID_OBJECT) return false; return true; } void MTinterface::Init () { pthread_mutex::init_mutex (); pthread_cond::init_mutex (); pthread_rwlock::init_mutex (); } void MTinterface::fixup_before_fork () { pthread_key::fixup_before_fork (); semaphore::fixup_before_fork (); } /* This function is called from a single threaded process */ void MTinterface::fixup_after_fork () { pthread_key::fixup_after_fork (); threadcount = 0; pthread::init_mainthread (); pthread::fixup_after_fork (); pthread_mutex::fixup_after_fork (); pthread_cond::fixup_after_fork (); pthread_rwlock::fixup_after_fork (); semaphore::fixup_after_fork (); } /* pthread calls */ /* static methods */ void pthread::init_mainthread () { pthread *thread = _my_tls.tid; if (!thread) { thread = new pthread (); if (!thread) api_fatal ("failed to create mainthread object"); } thread->set_tls_self_pointer (); thread->thread_id = GetCurrentThreadId (); if (!DuplicateHandle (GetCurrentProcess (), GetCurrentThread (), GetCurrentProcess (), &thread->win32_obj_id, 0, FALSE, DUPLICATE_SAME_ACCESS)) api_fatal ("failed to create mainthread handle"); if (!thread->create_cancel_event ()) api_fatal ("couldn't create cancel event for main thread"); VerifyHandle (thread->win32_obj_id); /* Make sure the pthread mutex is recursive. See comment in pthread::precreate (called only for subsequent pthreads) for a description. */ thread->mutex.set_type (PTHREAD_MUTEX_RECURSIVE); thread->postcreate (); } pthread * pthread::self () { pthread *thread = _my_tls.tid; if (!thread) { thread = pthread_null::get_null_pthread (); thread->set_tls_self_pointer (); } return thread; } void pthread::set_tls_self_pointer () { cygtls = &_my_tls; _my_tls.tid = this; } List pthread::threads; /* member methods */ pthread::pthread ():verifyable_object (PTHREAD_MAGIC), win32_obj_id (0), valid (false), suspended (false), canceled (false), cancelstate (0), canceltype (0), cancel_event (0), joiner (NULL), next (NULL), cleanup_stack (NULL) { if (this != pthread_null::get_null_pthread ()) threads.insert (this); sigprocmask (SIG_SETMASK, NULL, &parent_sigmask); } pthread::~pthread () { if (win32_obj_id) CloseHandle (win32_obj_id); if (cancel_event) CloseHandle (cancel_event); if (this != pthread_null::get_null_pthread ()) threads.remove (this); } bool pthread::create_cancel_event () { cancel_event = ::CreateEvent (&sec_none_nih, true, false, NULL); if (!cancel_event) { system_printf ("couldn't create cancel event, %E"); /* we need the event for correct behaviour */ return false; } return true; } void pthread::precreate (pthread_attr *newattr) { pthread_mutex *verifyable_mutex_obj = &mutex; /* already running ? */ if (win32_obj_id) return; if (newattr) { attr.joinable = newattr->joinable; attr.contentionscope = newattr->contentionscope; attr.inheritsched = newattr->inheritsched; attr.stackaddr = newattr->stackaddr; attr.stacksize = newattr->stacksize; attr.guardsize = newattr->guardsize; } if (!pthread_mutex::is_good_object (&verifyable_mutex_obj)) { thread_printf ("New thread object access mutex is not valid. this %p", this); magic = 0; return; } /* This mutex MUST be recursive. Consider the following scenario: - The thread installs a cleanup handler. - The cleanup handler calls a function which itself installs a cleanup handler. - pthread_cancel is called for this thread. - The thread's cleanup handler is called under mutex lock condition. - The cleanup handler calls the subsequent function with cleanup handler. - The function runs to completion, so it calls pthread_cleanup_pop. - pthread_cleanup_pop calls pthread::pop_cleanup_handler which will again try to lock the mutex. - Deadlock. */ mutex.set_type (PTHREAD_MUTEX_RECURSIVE); if (!create_cancel_event ()) magic = 0; } bool pthread::create (void *(*func) (void *), pthread_attr *newattr, void *threadarg) { bool retval; precreate (newattr); if (!magic) return false; function = func; arg = threadarg; mutex.lock (); /* stackaddr holds the uppermost stack address. See the comments in pthread_attr_setstack and pthread_attr_setstackaddr for a description. */ ULONG stacksize = attr.stacksize ?: get_rlimit_stack (); PVOID stackaddr = attr.stackaddr ? ((caddr_t) attr.stackaddr - stacksize) : NULL; win32_obj_id = CygwinCreateThread (thread_init_wrapper, this, stackaddr, stacksize, attr.guardsize, 0, &thread_id); if (!win32_obj_id) { thread_printf ("CreateThread failed: this %p, %E", this); magic = 0; } else { postcreate (); while (!cygtls) yield (); } retval = magic; mutex.unlock (); return retval; } void pthread::postcreate () { valid = true; InterlockedIncrement (&MT_INTERFACE->threadcount); /* Per POSIX the new thread inherits the sched priority from its caller thread if PTHREAD_INHERIT_SCHED is set. FIXME: set the priority appropriately for system contention scope */ if (attr.inheritsched == PTHREAD_INHERIT_SCHED) attr.schedparam.sched_priority = sched_get_thread_priority (GetCurrentThread ()); if (attr.schedparam.sched_priority) sched_set_thread_priority (win32_obj_id, attr.schedparam.sched_priority); } void pthread::exit (void *value_ptr) { class pthread *thread = this; _cygtls *tls = cygtls; /* Save cygtls before deleting this. */ // run cleanup handlers pop_all_cleanup_handlers (); pthread_key::run_all_destructors (); mutex.lock (); // cleanup if thread is in detached state and not joined if (equal (joiner, thread)) delete this; else { valid = false; return_ptr = value_ptr; mutex.unlock (); } if (_my_tls.local_clib.__sdidinit < 0) _my_tls.local_clib.__sdidinit = 0; _reclaim_reent (_REENT); if (InterlockedDecrement (&MT_INTERFACE->threadcount) == 0) ::exit (0); else { if (tls == _main_tls) { cygheap->find_tls (tls); /* Lock _main_tls mutex. */ _cygtls *dummy = (_cygtls *) malloc (sizeof (_cygtls)); *dummy = *_main_tls; _main_tls = dummy; _main_tls->initialized = 0; } /* This also unlocks and closes the _main_tls mutex. */ tls->remove (INFINITE); ExitThread (0); } } int pthread::cancel () { class pthread *thread = this; class pthread *self = pthread::self (); mutex.lock (); if (!valid) { mutex.unlock (); return 0; } if (canceltype == PTHREAD_CANCEL_DEFERRED || cancelstate == PTHREAD_CANCEL_DISABLE) { // cancel deferred mutex.unlock (); canceled = true; SetEvent (cancel_event); return 0; } else if (equal (thread, self)) { mutex.unlock (); cancel_self (); return 0; // Never reached } // cancel asynchronous SuspendThread (win32_obj_id); if (WaitForSingleObject (win32_obj_id, 0) == WAIT_TIMEOUT) { CONTEXT context; context.ContextFlags = CONTEXT_CONTROL; GetThreadContext (win32_obj_id, &context); /* The OS is not foolproof in terms of asynchronous thread cancellation and tends to hang infinitely if we change the instruction pointer. So just don't cancel asynchronously if the thread is currently executing Windows code. Rely on deferred cancellation in this case. */ threadlist_t *tl_entry = cygheap->find_tls (cygtls); if (!cygtls->inside_kernel (&context)) { #ifdef __x86_64__ context.Rip = (ULONG_PTR) pthread::static_cancel_self; #else context.Eip = (DWORD) pthread::static_cancel_self; #endif SetThreadContext (win32_obj_id, &context); } cygheap->unlock_tls (tl_entry); } mutex.unlock (); /* See above. For instance, a thread which waits for a semaphore in sem_wait will call cygwait which in turn calls WFMO. While this WFMO call is cancelable by setting the thread's cancel_event object, the OS apparently refuses to set the thread's context and continues to wait for the WFMO conditions. This is *not* reflected in the return value of SetThreadContext or ResumeThread, btw. So, what we do here is to set the cancel_event as well to allow at least a deferred cancel. */ canceled = true; SetEvent (cancel_event); ResumeThread (win32_obj_id); return 0; } /* TODO: Insert pthread_testcancel into the required functions. Here are the lists of required and optional functions per POSIX.1-2001 and POSIX.1-2008. A star (*) indicates that the Cygwin function already is a cancellation point (aka "calls pthread_testcancel"), an o (o) indicates that the function is not implemented in Cygwin. Required cancellation points: * accept () * aio_suspend () * clock_nanosleep () * close () * connect () * creat () * fcntl () F_SETLKW * fdatasync () * fsync () o getmsg () o getpmsg () * lockf () F_LOCK * mq_receive () * mq_send () * mq_timedreceive () * mq_timedsend () msgrcv () msgsnd () * msync () * nanosleep () * open () * openat () * pause () * poll () * pread () * pselect () * pthread_cond_timedwait () * pthread_cond_wait () * pthread_join () * pthread_testcancel () o putmsg () o putpmsg () * pwrite () * read () * readv () * recv () * recvfrom () * recvmsg () * select () * sem_timedwait () * sem_wait () * send () * sendmsg () * sendto () * sigpause () * sigsuspend () * sigtimedwait () * sigwait () * sigwaitinfo () * sleep () * system () * tcdrain () * usleep () * wait () * wait3() o waitid () * waitpid () * write () * writev () Optional cancellation points: access () asctime () asctime_r () catclose () Implemented externally: libcatgets catgets () Implemented externally: libcatgets catopen () Implemented externally: libcatgets chmod () chown () closedir () closelog () ctermid () ctime () ctime_r () dbm_close () Implemented externally: libgdbm dbm_delete () Implemented externally: libgdbm dbm_fetch () Implemented externally: libgdbm dbm_nextkey () Implemented externally: libgdbm dbm_open () Implemented externally: libgdbm dbm_store () Implemented externally: libgdbm dlclose () dlopen () dprintf () endgrent () endhostent () o endnetent () endprotoent () endpwent () endservent () endutxent () faccessat () fchmod () fchmodat () fchown () fchownat () * fclose () * fcntl () (any value) fflush () fgetc () fgetpos () fgets () fgetwc () fgetws () o fmtmsg () fopen () fpathconf () fprintf () fputc () fputs () fputwc () fputws () fread () freopen () fscanf () fseek () fseeko () fsetpos () fstat () fstatat () ftell () ftello () ftw () futimens () fwprintf () fwrite () fwscanf () getaddrinfo () getc () getc_unlocked () getchar () getchar_unlocked () getcwd () o getdate () getdelim () getgrent () getgrgid () getgrgid_r () getgrnam () getgrnam_r () gethostbyaddr () gethostbyname () gethostent () gethostid () gethostname () getline () getlogin () getlogin_r () getnameinfo () o getnetbyaddr () o getnetbyname () o getnetent () getopt () (if opterr is nonzero) getprotobyname () getprotobynumber () getprotoent () getpwent () * getpwnam () * getpwnam_r () * getpwuid () * getpwuid_r () gets () getservbyname () getservbyport () getservent () getutxent () getutxid () getutxline () getwc () getwchar () getwd () glob () iconv_close () Implemented externally: libiconv iconv_open () Implemented externally: libiconv ioctl () link () linkat () * lio_listio () localtime () localtime_r () * lockf () lseek () lstat () mkdir () mkdirat () mkdtemp () mkfifo () mkfifoat () mknod () mknodat () mkstemp () mktime () nftw () opendir () openlog () pathconf () pclose () perror () popen () posix_fadvise () posix_fallocate () posix_madvise () posix_openpt () posix_spawn () posix_spawnp () o posix_trace_clear () o posix_trace_close () o posix_trace_create () o posix_trace_create_withlog () o posix_trace_eventtypelist_getnext_id () o posix_trace_eventtypelist_rewind () o posix_trace_flush () o posix_trace_get_attr () o posix_trace_get_filter () o posix_trace_get_status () o posix_trace_getnext_event () o posix_trace_open () o posix_trace_rewind () o posix_trace_set_filter () o posix_trace_shutdown () o posix_trace_timedgetnext_event () o posix_typed_mem_open () printf () psiginfo () psignal () pthread_rwlock_rdlock () o pthread_rwlock_timedrdlock () o pthread_rwlock_timedwrlock () pthread_rwlock_wrlock () putc () putc_unlocked () putchar () putchar_unlocked () puts () pututxline () putwc () putwchar () readdir () readdir_r () readlink () readlinkat () remove () rename () renameat () rewind () rewinddir () scandir () scanf () seekdir () semop () setgrent () sethostent () o setnetent () setprotoent () setpwent () setservent () setutxent () sigpause () stat () strerror () strerror_r () strftime () symlink () symlinkat () sync () syslog () tmpfile () tmpnam () ttyname () ttyname_r () tzset () ungetc () ungetwc () unlink () unlinkat () utime () utimensat () utimes () vdprintf () vfprintf () vfwprintf () vprintf () vwprintf () wcsftime () wordexp () wprintf () wscanf () An implementation may also mark other functions not specified in the standard as cancellation points. In particular, an implementation is likely to mark any nonstandard function that may block as a cancellation point. */ void pthread::testcancel () { if (cancelstate == PTHREAD_CANCEL_DISABLE) return; /* We check for the canceled flag first. This allows to use the pthread_testcancel function a lot without adding the overhead of an OS call. Only if the thread is marked as canceled, we wait for cancel_event being really set, on the off-chance that pthread_cancel gets interrupted before calling SetEvent. */ if (canceled) { WaitForSingleObject (cancel_event, INFINITE); cancel_self (); } } /* Return cancel event handle if it exists *and* cancel is not disabled. This function is supposed to be used from other functions which are cancelable and need the cancel event in a WFMO call. */ HANDLE pthread::get_cancel_event () { pthread_t thread = pthread::self (); return (thread && thread->cancel_event && thread->cancelstate != PTHREAD_CANCEL_DISABLE) ? thread->cancel_event : NULL; } void pthread::static_cancel_self () { pthread::self ()->cancel_self (); } int pthread::setcancelstate (int state, int *oldstate) { if (state != PTHREAD_CANCEL_ENABLE && state != PTHREAD_CANCEL_DISABLE) return EINVAL; if (oldstate) *oldstate = cancelstate; cancelstate = state; return 0; } int pthread::setcanceltype (int type, int *oldtype) { if (type != PTHREAD_CANCEL_DEFERRED && type != PTHREAD_CANCEL_ASYNCHRONOUS) return EINVAL; if (oldtype) *oldtype = canceltype; canceltype = type; return 0; } void pthread::push_cleanup_handler (__pthread_cleanup_handler *handler) { if (this != self ()) // TODO: do it? api_fatal ("Attempt to push a cleanup handler across threads"); handler->next = cleanup_stack; cleanup_stack = handler; } void pthread::pop_cleanup_handler (int const execute) { if (this != self ()) // TODO: send a signal or something to the thread ? api_fatal ("Attempt to execute a cleanup handler across threads"); mutex.lock (); if (cleanup_stack != NULL) { __pthread_cleanup_handler *handler = cleanup_stack; if (execute) (*handler->function) (handler->arg); cleanup_stack = handler->next; } mutex.unlock (); } void pthread::pop_all_cleanup_handlers () { /* We will no honor cancels since the thread is exiting. */ cancelstate = PTHREAD_CANCEL_DISABLE; while (cleanup_stack != NULL) pop_cleanup_handler (1); } void pthread::cancel_self () { /* Can someone explain why the pthread:: is needed here? g++ complains without it. */ pthread::exit (PTHREAD_CANCELED); } DWORD pthread::get_thread_id () { return thread_id; } void pthread::_fixup_after_fork () { /* set thread to not running if it is not the forking thread */ if (this != pthread::self ()) { magic = 0; valid = false; win32_obj_id = NULL; canceled = false; cancel_event = NULL; } } void pthread::suspend_except_self () { if (valid && this != pthread::self ()) SuspendThread (win32_obj_id); } void pthread::resume () { if (valid) ResumeThread (win32_obj_id); } /* instance members */ pthread_attr::pthread_attr ():verifyable_object (PTHREAD_ATTR_MAGIC), joinable (PTHREAD_CREATE_JOINABLE), contentionscope (PTHREAD_SCOPE_PROCESS), inheritsched (PTHREAD_INHERIT_SCHED), stackaddr (NULL), stacksize (0), guardsize (wincap.def_guard_page_size ()), name (NULL) { schedparam.sched_priority = 0; } pthread_attr::~pthread_attr () { } pthread_condattr::pthread_condattr ():verifyable_object (PTHREAD_CONDATTR_MAGIC), shared (PTHREAD_PROCESS_PRIVATE), clock_id (CLOCK_REALTIME) { } pthread_condattr::~pthread_condattr () { } List pthread_cond::conds; /* This is used for cond creation protection within a single process only */ fast_mutex NO_COPY pthread_cond::cond_initialization_lock; /* We can only be called once. TODO: (no rush) use a non copied memory section to hold an initialization flag. */ void pthread_cond::init_mutex () { if (!cond_initialization_lock.init ()) api_fatal ("Could not create win32 Mutex for pthread cond static initializer support."); } pthread_cond::pthread_cond (pthread_condattr *attr) : verifyable_object (PTHREAD_COND_MAGIC), shared (0), clock_id (CLOCK_REALTIME), waiting (0), pending (0), sem_wait (NULL), mtx_cond(NULL), next (NULL) { pthread_mutex *verifyable_mutex_obj; if (attr) { clock_id = attr->clock_id; if (attr->shared != PTHREAD_PROCESS_PRIVATE) { magic = 0; return; } } verifyable_mutex_obj = &mtx_in; if (!pthread_mutex::is_good_object (&verifyable_mutex_obj)) { thread_printf ("Internal cond mutex is not valid. this %p", this); magic = 0; return; } /* * Change the mutex type to NORMAL. * This mutex MUST be of type normal */ mtx_in.set_type (PTHREAD_MUTEX_NORMAL); verifyable_mutex_obj = &mtx_out; if (!pthread_mutex::is_good_object (&verifyable_mutex_obj)) { thread_printf ("Internal cond mutex is not valid. this %p", this); magic = 0; return; } /* Change the mutex type to NORMAL to speed up mutex operations */ mtx_out.set_type (PTHREAD_MUTEX_NORMAL); sem_wait = ::CreateSemaphore (&sec_none_nih, 0, INT32_MAX, NULL); if (!sem_wait) { pthread_printf ("CreateSemaphore failed. %E"); magic = 0; return; } conds.insert (this); } pthread_cond::~pthread_cond () { if (sem_wait) CloseHandle (sem_wait); conds.remove (this); } void pthread_cond::unblock (const bool all) { LONG releaseable; /* * Block outgoing threads (and avoid simultanous unblocks) */ mtx_out.lock (); releaseable = waiting - pending; if (releaseable) { LONG released; if (!pending) { /* * Block incoming threads until all waiting threads are released. */ mtx_in.lock (); /* * Calculate releaseable again because threads can enter until * the semaphore has been taken, but they can not leave, therefore pending * is unchanged and releaseable can only get higher */ releaseable = waiting - pending; } released = all ? releaseable : 1; pending += released; /* * Signal threads */ ::ReleaseSemaphore (sem_wait, released, NULL); } /* * And let the threads release. */ mtx_out.unlock (); } int pthread_cond::wait (pthread_mutex_t mutex, PLARGE_INTEGER timeout) { DWORD rv; mtx_in.lock (); if (InterlockedIncrement (&waiting) == 1) mtx_cond = mutex; else if (mtx_cond != mutex) { InterlockedDecrement (&waiting); mtx_in.unlock (); return EINVAL; } mtx_in.unlock (); /* * Release the mutex and wait on semaphore */ ++mutex->condwaits; mutex->unlock (); rv = cygwait (sem_wait, timeout, cw_cancel | cw_sig_restart); mtx_out.lock (); if (rv != WAIT_OBJECT_0 && WaitForSingleObject (sem_wait, 0) == WAIT_OBJECT_0) /* Thread got cancelled ot timed out while a signalling is in progress. Set wait result back to signaled */ rv = WAIT_OBJECT_0; InterlockedDecrement (&waiting); if (rv == WAIT_OBJECT_0 && --pending == 0) /* * All signaled threads are released, * new threads can enter Wait */ mtx_in.unlock (); mtx_out.unlock (); mutex->lock (); --mutex->condwaits; if (rv == WAIT_CANCELED) pthread::static_cancel_self (); else if (rv == WAIT_TIMEOUT) return ETIMEDOUT; return 0; } void pthread_cond::_fixup_after_fork () { waiting = pending = 0; mtx_cond = NULL; /* Unlock eventually locked mutexes */ mtx_in.unlock (); mtx_out.unlock (); sem_wait = ::CreateSemaphore (&sec_none_nih, 0, INT32_MAX, NULL); if (!sem_wait) api_fatal ("pthread_cond::_fixup_after_fork () failed to recreate win32 semaphore"); } pthread_barrierattr::pthread_barrierattr () : verifyable_object (PTHREAD_BARRIERATTR_MAGIC) , shared (PTHREAD_PROCESS_PRIVATE) { } pthread_barrierattr::~pthread_barrierattr () { } pthread_barrier::pthread_barrier () : verifyable_object (PTHREAD_BARRIER_MAGIC) { } pthread_barrier::~pthread_barrier () { } pthread_rwlockattr::pthread_rwlockattr ():verifyable_object (PTHREAD_RWLOCKATTR_MAGIC), shared (PTHREAD_PROCESS_PRIVATE) { } pthread_rwlockattr::~pthread_rwlockattr () { } List pthread_rwlock::rwlocks; /* This is used for rwlock creation protection within a single process only */ fast_mutex NO_COPY pthread_rwlock::rwlock_initialization_lock; /* We can only be called once. TODO: (no rush) use a non copied memory section to hold an initialization flag. */ void pthread_rwlock::init_mutex () { if (!rwlock_initialization_lock.init ()) api_fatal ("Could not create win32 Mutex for pthread rwlock static initializer support."); } pthread_rwlock::pthread_rwlock (pthread_rwlockattr *attr) : verifyable_object (PTHREAD_RWLOCK_MAGIC), shared (0), waiting_readers (0), waiting_writers (0), writer (NULL), readers (NULL), readers_mx (), mtx (NULL), cond_readers (NULL), cond_writers (NULL), next (NULL) { pthread_mutex *verifyable_mutex_obj = &mtx; pthread_cond *verifyable_cond_obj; if (!readers_mx.init ()) { thread_printf ("Internal rwlock synchronisation mutex is not valid. this %p", this); magic = 0; return; } if (attr) if (attr->shared != PTHREAD_PROCESS_PRIVATE) { magic = 0; return; } if (!pthread_mutex::is_good_object (&verifyable_mutex_obj)) { thread_printf ("Internal rwlock mutex is not valid. this %p", this); magic = 0; return; } /* Change the mutex type to NORMAL to speed up mutex operations */ mtx.set_type (PTHREAD_MUTEX_NORMAL); verifyable_cond_obj = &cond_readers; if (!pthread_cond::is_good_object (&verifyable_cond_obj)) { thread_printf ("Internal rwlock readers cond is not valid. this %p", this); magic = 0; return; } verifyable_cond_obj = &cond_writers; if (!pthread_cond::is_good_object (&verifyable_cond_obj)) { thread_printf ("Internal rwlock writers cond is not valid. this %p", this); magic = 0; return; } rwlocks.insert (this); } pthread_rwlock::~pthread_rwlock () { rwlocks.remove (this); } int pthread_rwlock::rdlock (PLARGE_INTEGER timeout) { int result = 0; struct RWLOCK_READER *reader; mtx.lock (); reader = lookup_reader (); if (reader) { if (reader->n < UINT32_MAX) ++reader->n; else result = EAGAIN; goto DONE; } while (writer || waiting_writers) { int ret; pthread_cleanup_push (pthread_rwlock::rdlock_cleanup, this); ++waiting_readers; ret = cond_readers.wait (&mtx, timeout); --waiting_readers; pthread_cleanup_pop (0); if (ret == ETIMEDOUT) { result = ETIMEDOUT; goto DONE; } } if ((reader = add_reader ())) ++reader->n; else { result = EAGAIN; goto DONE; } DONE: mtx.unlock (); return result; } int pthread_rwlock::tryrdlock () { int result = 0; mtx.lock (); if (writer || waiting_writers) result = EBUSY; else { RWLOCK_READER *reader = lookup_reader (); if (!reader) reader = add_reader (); if (reader && reader->n < UINT32_MAX) ++reader->n; else result = EAGAIN; } mtx.unlock (); return result; } int pthread_rwlock::wrlock (PLARGE_INTEGER timeout) { int result = 0; pthread_t self = pthread::self (); mtx.lock (); if (writer == self || lookup_reader ()) { result = EDEADLK; goto DONE; } while (writer || readers) { int ret; pthread_cleanup_push (pthread_rwlock::wrlock_cleanup, this); ++waiting_writers; ret = cond_writers.wait (&mtx, timeout); --waiting_writers; pthread_cleanup_pop (0); if (ret == ETIMEDOUT) { result = ETIMEDOUT; goto DONE; } } writer = self; DONE: mtx.unlock (); return result; } int pthread_rwlock::trywrlock () { int result = 0; pthread_t self = pthread::self (); mtx.lock (); if (writer || readers) result = EBUSY; else writer = self; mtx.unlock (); return result; } int pthread_rwlock::unlock () { int result = 0; mtx.lock (); if (writer) { if (writer != pthread::self ()) { result = EPERM; goto DONE; } writer = NULL; } else { struct RWLOCK_READER *reader = lookup_reader (); if (!reader) { result = EPERM; goto DONE; } if (--reader->n > 0) goto DONE; remove_reader (reader); delete reader; } release (); DONE: mtx.unlock (); return result; } pthread_rwlock::RWLOCK_READER * pthread_rwlock::add_reader () { RWLOCK_READER *rd = new RWLOCK_READER; if (rd) List_insert (readers, rd); return rd; } void pthread_rwlock::remove_reader (struct RWLOCK_READER *rd) { List_remove (readers_mx, readers, rd); } struct pthread_rwlock::RWLOCK_READER * pthread_rwlock::lookup_reader () { readers_mx.lock (); pthread_t thread = pthread::self (); struct RWLOCK_READER *cur = readers; while (cur && cur->thread != thread) cur = cur->next; readers_mx.unlock (); return cur; } void pthread_rwlock::rdlock_cleanup (void *arg) { pthread_rwlock *rwlock = (pthread_rwlock *) arg; --(rwlock->waiting_readers); rwlock->release (); rwlock->mtx.unlock (); } void pthread_rwlock::wrlock_cleanup (void *arg) { pthread_rwlock *rwlock = (pthread_rwlock *) arg; --(rwlock->waiting_writers); rwlock->release (); rwlock->mtx.unlock (); } void pthread_rwlock::_fixup_after_fork () { pthread_t self = pthread::self (); struct RWLOCK_READER **temp = &readers; waiting_readers = 0; waiting_writers = 0; if (!readers_mx.init ()) api_fatal ("pthread_rwlock::_fixup_after_fork () failed to recreate mutex"); /* Unlock eventually locked mutex */ mtx.unlock (); /* * Remove all readers except self */ while (*temp) { if ((*temp)->thread == self) temp = &((*temp)->next); else { struct RWLOCK_READER *cur = *temp; *temp = (*temp)->next; delete cur; } } } /* pthread_key */ /* static members */ /* This stores pthread_key information across fork() boundaries */ List pthread_key::keys; /* non-static members */ pthread_key::pthread_key (void (*aDestructor) (void *)):verifyable_object (PTHREAD_KEY_MAGIC), destructor (aDestructor) { tls_index = TlsAlloc (); if (tls_index == TLS_OUT_OF_INDEXES) magic = 0; else keys.insert (this); } pthread_key::~pthread_key () { /* We may need to make the list code lock the list during operations */ if (magic != 0) { keys.remove (this); TlsFree (tls_index); } } void pthread_key::_fixup_before_fork () { fork_buf = get (); } void pthread_key::_fixup_after_fork () { tls_index = TlsAlloc (); if (tls_index == TLS_OUT_OF_INDEXES) api_fatal ("pthread_key::recreate_key_from_buffer () failed to reallocate Tls storage"); set (fork_buf); } bool pthread_key::iterate_dtors_once_more; void pthread_key::run_destructor () { if (destructor) { void *oldValue = get (); if (oldValue) { set (NULL); destructor (oldValue); if (get ()) iterate_dtors_once_more = true; } } } /* pshared mutexs */ /* static members */ List pthread_mutex::mutexes; /* This is used for mutex creation protection within a single process only */ fast_mutex NO_COPY pthread_mutex::mutex_initialization_lock; void pthread_mutex::init_mutex () { if (!mutex_initialization_lock.init ()) api_fatal ("Could not create win32 Mutex for pthread mutex static initializer support."); } pthread_mutex::pthread_mutex (pthread_mutexattr *attr) : verifyable_object (0), /* set magic to zero initially */ lock_counter (0), win32_obj_id (NULL), owner (_new_mutex), #ifdef DEBUGGING tid (0), #endif recursion_counter (0), condwaits (0), type (PTHREAD_MUTEX_NORMAL), pshared (PTHREAD_PROCESS_PRIVATE) { win32_obj_id = ::CreateEvent (&sec_none_nih, false, false, NULL); if (!win32_obj_id) return; /*attr checked in the C call */ if (!attr) /* handled in the caller */; else if (attr->pshared != PTHREAD_PROCESS_SHARED) type = attr->mutextype; else return; /* Not implemented */ magic = PTHREAD_MUTEX_MAGIC; mutexes.insert (this); } pthread_mutex::~pthread_mutex () { if (win32_obj_id) { CloseHandle (win32_obj_id); win32_obj_id = NULL; } mutexes.remove (this); owner = _destroyed_mutex; magic = 0; } int pthread_mutex::lock (PLARGE_INTEGER timeout) { pthread_t self = ::pthread_self (); int result = 0; if (InterlockedIncrement (&lock_counter) == 1) set_owner (self); else if (type == PTHREAD_MUTEX_NORMAL /* potentially causes deadlock */ || !pthread::equal (owner, self)) { if (cygwait (win32_obj_id, timeout, cw_sig | cw_sig_restart) != WAIT_TIMEOUT) set_owner (self); else { InterlockedDecrement (&lock_counter); result = ETIMEDOUT; } } else { InterlockedDecrement (&lock_counter); if (type == PTHREAD_MUTEX_RECURSIVE) result = lock_recursive (); else result = EDEADLK; } pthread_printf ("mutex %p, self %p, owner %p, lock_counter %d, recursion_counter %u", this, self, owner, lock_counter, recursion_counter); return result; } int pthread_mutex::unlock () { int res = 0; pthread_t self = ::pthread_self (); if (type == PTHREAD_MUTEX_NORMAL) /* no error checking */; else if (no_owner ()) res = type == PTHREAD_MUTEX_ERRORCHECK ? EPERM : 0; else if (!pthread::equal (owner, self)) res = EPERM; if (!res && recursion_counter > 0 && --recursion_counter == 0) /* Don't try to unlock anything if recursion_counter == 0. This means the mutex was never locked or that we've forked. */ { owner = (pthread_t) _unlocked_mutex; #ifdef DEBUGGING tid = 0; // thread-id #endif if (InterlockedDecrement (&lock_counter)) ::SetEvent (win32_obj_id); // Another thread is waiting res = 0; } pthread_printf ("mutex %p, owner %p, self %p, lock_counter %d, recursion_counter %u, type %d, res %d", this, owner, self, lock_counter, recursion_counter, type, res); return res; } int pthread_mutex::trylock () { pthread_t self = ::pthread_self (); int result = 0; if (InterlockedCompareExchange (&lock_counter, 1, 0) == 0) set_owner (self); else if (type == PTHREAD_MUTEX_RECURSIVE && pthread::equal (owner, self)) result = lock_recursive (); else result = EBUSY; return result; } int pthread_mutex::destroy () { if (condwaits || trylock ()) // Do not destroy a condwaited or locked mutex return EBUSY; else if (recursion_counter > 1) { // Do not destroy a recursive locked mutex recursion_counter--; return EBUSY; } delete this; return 0; } void pthread_mutex::_fixup_after_fork () { pthread_printf ("mutex %p", this); if (pshared != PTHREAD_PROCESS_PRIVATE) api_fatal ("pthread_mutex::_fixup_after_fork () doesn't understand PROCESS_SHARED mutex's"); /* All waiting threads are gone after a fork */ recursion_counter = 0; lock_counter = 0; condwaits = 0; #ifdef DEBUGGING tid = 0xffffffff; /* Don't know the tid after a fork */ #endif win32_obj_id = ::CreateEvent (&sec_none_nih, false, false, NULL); if (!win32_obj_id) api_fatal ("pthread_mutex::_fixup_after_fork () failed to recreate win32 event for mutex"); } pthread_mutexattr::pthread_mutexattr ():verifyable_object (PTHREAD_MUTEXATTR_MAGIC), pshared (PTHREAD_PROCESS_PRIVATE), mutextype (PTHREAD_MUTEX_NORMAL) { } pthread_mutexattr::~pthread_mutexattr () { } /* pshared spinlocks The infrastructure is provided by the underlying pthread_mutex class. The rest is a simplification implementing spin locking. */ pthread_spinlock::pthread_spinlock (int pshared) : pthread_mutex (NULL) { magic = PTHREAD_SPINLOCK_MAGIC; set_type (PTHREAD_MUTEX_NORMAL); set_shared (pshared); } int pthread_spinlock::lock () { pthread_t self = ::pthread_self (); int result = -1; unsigned spins = 0; /* We want to spin using 'pause' instruction on multi-core system but we want to avoid this on single-core systems. The limit of 1000 spins is semi-arbitrary. Microsoft suggests (in their InitializeCriticalSectionAndSpinCount documentation on MSDN) they are using spin count limit 4000 for their heap manager critical sections. Other source suggest spin count as small as 200 for fast path of mutex locking. */ unsigned const FAST_SPINS_LIMIT = wincap.cpu_count () != 1 ? 1000 : 0; do { if (InterlockedExchange (&lock_counter, 1) == 0) { set_owner (self); result = 0; } else if (unlikely(pthread::equal (owner, self))) result = EDEADLK; else if (spins < FAST_SPINS_LIMIT) { ++spins; __asm__ volatile ("pause":::); } else { /* Minimal timeout to minimize CPU usage while still spinning. */ LARGE_INTEGER timeout; timeout.QuadPart = -10000LL; /* FIXME: no cancel? */ cygwait (win32_obj_id, &timeout, cw_sig); } } while (result == -1); pthread_printf ("spinlock %p, self %p, owner %p", this, self, owner); return result; } int pthread_spinlock::unlock () { pthread_t self = ::pthread_self (); int result = 0; if (!pthread::equal (owner, self)) result = EPERM; else { owner = (pthread_t) _unlocked_mutex; #ifdef DEBUGGING tid = 0; // thread-id #endif InterlockedExchange (&lock_counter, 0); ::SetEvent (win32_obj_id); result = 0; } pthread_printf ("spinlock %p, owner %p, self %p, res %d", this, owner, self, result); return result; } DWORD WINAPI pthread::thread_init_wrapper (void *arg) { exception protect; pthread *thread = (pthread *) arg; /* This *must* be set prior to calling set_tls_self_pointer or there is a race with the signal processing code which may miss the signal mask settings. */ _my_tls.sigmask = thread->parent_sigmask; thread->set_tls_self_pointer (); // Give thread default name SetThreadName (GetCurrentThreadId (), program_invocation_short_name); thread->mutex.lock (); // if thread is detached force cleanup on exit if (thread->attr.joinable == PTHREAD_CREATE_DETACHED && thread->joiner == NULL) thread->joiner = thread; thread->mutex.unlock (); debug_printf ("tid %p", &_my_tls); thread_printf ("started thread %p %p %p %p %p %p", arg, &_my_tls.local_clib, _impure_ptr, thread, thread->function, thread->arg); // call the user's thread void *ret = thread->function (thread->arg); thread->exit (ret); return 0; // just for show. Never returns. } unsigned long pthread::getsequence_np () { return get_thread_id (); } int pthread::create (pthread_t *thread, const pthread_attr_t *attr, void *(*start_routine) (void *), void *arg) { if (attr && !pthread_attr::is_good_object (attr)) return EINVAL; *thread = new pthread (); if (!(*thread)->create (start_routine, attr ? *attr : NULL, arg)) { delete (*thread); *thread = NULL; return EAGAIN; } return 0; } int pthread::once (pthread_once_t *once_control, void (*init_routine) (void)) { // already done ? if (once_control->state) return 0; pthread_mutex_lock (&once_control->mutex); /* Here we must set a cancellation handler to unlock the mutex if needed */ /* but a cancellation handler is not the right thing. We need this in the thread *cleanup routine. Assumption: a thread can only be in one pthread_once routine *at a time. Stote a mutex_t *in the pthread_structure. if that's non null unlock *on pthread_exit (); */ if (!once_control->state) { init_routine (); once_control->state = 1; } /* Here we must remove our cancellation handler */ pthread_mutex_unlock (&once_control->mutex); return 0; } int pthread::cancel (pthread_t thread) { if (!is_good_object (&thread)) return ESRCH; return thread->cancel (); } void pthread::atforkprepare () { callback *cb = MT_INTERFACE->pthread_prepare; while (cb) { cb->cb (); cb = cb->next; } __fp_lock_all (); MT_INTERFACE->fixup_before_fork (); } void pthread::atforkparent () { __fp_unlock_all (); callback *cb = MT_INTERFACE->pthread_parent; while (cb) { cb->cb (); cb = cb->next; } } void pthread::atforkchild () { MT_INTERFACE->fixup_after_fork (); __fp_unlock_all (); callback *cb = MT_INTERFACE->pthread_child; while (cb) { cb->cb (); cb = cb->next; } } /* Register a set of functions to run before and after fork. prepare calls are called in LI-FC order. parent and child calls are called in FI-FC order. */ int pthread::atfork (void (*prepare)(void), void (*parent)(void), void (*child)(void)) { callback *prepcb = NULL, *parentcb = NULL, *childcb = NULL; if (prepare) { prepcb = new callback; if (!prepcb) return ENOMEM; } if (parent) { parentcb = new callback; if (!parentcb) { if (prepcb) delete prepcb; return ENOMEM; } } if (child) { childcb = new callback; if (!childcb) { if (prepcb) delete prepcb; if (parentcb) delete parentcb; return ENOMEM; } } if (prepcb) { prepcb->cb = prepare; List_insert (MT_INTERFACE->pthread_prepare, prepcb); } if (parentcb) { parentcb->cb = parent; callback **t = &MT_INTERFACE->pthread_parent; while (*t) t = &(*t)->next; /* t = pointer to last next in the list */ List_insert (*t, parentcb); } if (childcb) { childcb->cb = child; callback **t = &MT_INTERFACE->pthread_child; while (*t) t = &(*t)->next; /* t = pointer to last next in the list */ List_insert (*t, childcb); } return 0; } extern "C" int pthread_attr_init (pthread_attr_t *attr) { *attr = new pthread_attr; if (!pthread_attr::is_good_object (attr)) { delete (*attr); *attr = NULL; return ENOMEM; } return 0; } extern "C" int pthread_attr_getinheritsched (const pthread_attr_t *attr, int *inheritsched) { if (!pthread_attr::is_good_object (attr)) return EINVAL; *inheritsched = (*attr)->inheritsched; return 0; } extern "C" int pthread_attr_getschedparam (const pthread_attr_t *attr, struct sched_param *param) { if (!pthread_attr::is_good_object (attr)) return EINVAL; *param = (*attr)->schedparam; return 0; } /* From a pure code point of view, this should call a helper in sched.cc, to allow for someone adding scheduler policy changes to win32 in the future. However that's extremely unlikely, so short and sweet will do us */ extern "C" int pthread_attr_getschedpolicy (const pthread_attr_t *attr, int *policy) { if (!pthread_attr::is_good_object (attr)) return EINVAL; *policy = SCHED_FIFO; return 0; } extern "C" int pthread_attr_getscope (const pthread_attr_t *attr, int *contentionscope) { if (!pthread_attr::is_good_object (attr)) return EINVAL; *contentionscope = (*attr)->contentionscope; return 0; } extern "C" int pthread_attr_setdetachstate (pthread_attr_t *attr, int detachstate) { if (!pthread_attr::is_good_object (attr)) return EINVAL; if (detachstate < 0 || detachstate > 1) return EINVAL; (*attr)->joinable = detachstate; return 0; } extern "C" int pthread_attr_getdetachstate (const pthread_attr_t *attr, int *detachstate) { if (!pthread_attr::is_good_object (attr)) return EINVAL; *detachstate = (*attr)->joinable; return 0; } extern "C" int pthread_attr_setinheritsched (pthread_attr_t *attr, int inheritsched) { if (!pthread_attr::is_good_object (attr)) return EINVAL; if (inheritsched != PTHREAD_INHERIT_SCHED && inheritsched != PTHREAD_EXPLICIT_SCHED) return ENOTSUP; (*attr)->inheritsched = inheritsched; return 0; } extern "C" int pthread_attr_setschedparam (pthread_attr_t *attr, const struct sched_param *param) { if (!pthread_attr::is_good_object (attr)) return EINVAL; if (!valid_sched_parameters (param)) return ENOTSUP; (*attr)->schedparam = *param; return 0; } /* See __pthread_attr_getschedpolicy for some notes */ extern "C" int pthread_attr_setschedpolicy (pthread_attr_t *attr, int policy) { if (!pthread_attr::is_good_object (attr)) return EINVAL; if (policy != SCHED_FIFO) return ENOTSUP; return 0; } extern "C" int pthread_attr_setscope (pthread_attr_t *attr, int contentionscope) { if (!pthread_attr::is_good_object (attr)) return EINVAL; if (contentionscope != PTHREAD_SCOPE_SYSTEM && contentionscope != PTHREAD_SCOPE_PROCESS) return EINVAL; /* In future, we may be able to support system scope by escalating the thread priority to exceed the priority class. For now we only support PROCESS scope. */ if (contentionscope != PTHREAD_SCOPE_PROCESS) return ENOTSUP; (*attr)->contentionscope = contentionscope; return 0; } extern "C" int pthread_attr_setstack (pthread_attr_t *attr, void *addr, size_t size) { if (!pthread_attr::is_good_object (attr)) return EINVAL; if (addr == NULL) return EINVAL; if (size < PTHREAD_STACK_MIN) return EINVAL; /* The incoming address addr points to the lowest addressable byte of a buffer of size bytes. Due to the way pthread_attr_setstackaddr is defined on Linux, the lowest address ot the stack can't be reliably computed when using pthread_attr_setstackaddr/pthread_attr_setstacksize. Therefore we store the uppermost address of the stack in stackaddr. See also the comment in pthread_attr_setstackaddr. */ (*attr)->stackaddr = (caddr_t) addr + size; (*attr)->stacksize = size; return 0; } extern "C" int pthread_attr_getstack (const pthread_attr_t *attr, void **addr, size_t *size) { if (!pthread_attr::is_good_object (attr)) return EINVAL; /* stackaddr holds the uppermost stack address. See the comment in pthread_attr_setstack. */ *addr = (caddr_t) (*attr)->stackaddr - (*attr)->stacksize; *size = (*attr)->stacksize; return 0; } extern "C" int pthread_attr_setstackaddr (pthread_attr_t *attr, void *addr) { if (!pthread_attr::is_good_object (attr)) return EINVAL; if (addr == NULL) return EINVAL; /* This function is deprecated in SUSv4, but SUSv3 didn't define if the incoming stack address is the lowest address of the memory area defined as stack, or if it's the start address of the stack at which it begins its growth. On Linux it's the latter which means the uppermost stack address on x86 based systems. See comment in pthread_attr_setstack as well. */ (*attr)->stackaddr = addr; return 0; } extern "C" int pthread_attr_getstackaddr (const pthread_attr_t *attr, void **addr) { if (!pthread_attr::is_good_object (attr)) return EINVAL; /* See comment in pthread_attr_setstackaddr. */ *addr = (*attr)->stackaddr; return 0; } extern "C" int pthread_attr_setstacksize (pthread_attr_t *attr, size_t size) { if (!pthread_attr::is_good_object (attr)) return EINVAL; if (size < PTHREAD_STACK_MIN) return EINVAL; (*attr)->stacksize = size; return 0; } extern "C" int pthread_attr_getstacksize (const pthread_attr_t *attr, size_t *size) { if (!pthread_attr::is_good_object (attr)) return EINVAL; /* If the stacksize has not been set by the application, return the default stacksize. Note that this is different from what pthread_attr_getstack returns. */ *size = (*attr)->stacksize ?: get_rlimit_stack (); return 0; } extern "C" int pthread_attr_setguardsize (pthread_attr_t *attr, size_t size) { if (!pthread_attr::is_good_object (attr)) return EINVAL; /* We don't support a guardsize of more than 1 Meg. */ if (size > 1024 * 1024) return EINVAL; (*attr)->guardsize = size; return 0; } extern "C" int pthread_attr_getguardsize (const pthread_attr_t *attr, size_t *size) { if (!pthread_attr::is_good_object (attr)) return EINVAL; *size = (*attr)->guardsize; return 0; } extern "C" int pthread_attr_destroy (pthread_attr_t *attr) { if (!pthread_attr::is_good_object (attr)) return EINVAL; delete (*attr); *attr = NULL; return 0; } int pthread::join (pthread_t *thread, void **return_val, PLARGE_INTEGER timeout) { pthread_t joiner = self (); joiner->testcancel (); // Initialize return val with NULL if (return_val) *return_val = NULL; if (!is_good_object (&joiner)) return EINVAL; if (!is_good_object (thread)) return ESRCH; if (equal (*thread,joiner)) return EDEADLK; (*thread)->mutex.lock (); if ((*thread)->attr.joinable == PTHREAD_CREATE_DETACHED) { (*thread)->mutex.unlock (); return EINVAL; } else { (*thread)->joiner = joiner; (*thread)->attr.joinable = PTHREAD_CREATE_DETACHED; (*thread)->mutex.unlock (); switch (cygwait ((*thread)->win32_obj_id, timeout, cw_sig | cw_sig_restart | cw_cancel)) { case WAIT_OBJECT_0: if (return_val) *return_val = (*thread)->return_ptr; delete (*thread); break; case WAIT_CANCELED: // set joined thread back to joinable since we got canceled (*thread)->joiner = NULL; (*thread)->attr.joinable = PTHREAD_CREATE_JOINABLE; joiner->cancel_self (); // never reached break; case WAIT_TIMEOUT: // set joined thread back to joinable since we got canceled (*thread)->joiner = NULL; (*thread)->attr.joinable = PTHREAD_CREATE_JOINABLE; return (timeout && timeout->QuadPart == 0LL) ? EBUSY : ETIMEDOUT; default: // should never happen return EINVAL; } } return 0; } int pthread::detach (pthread_t *thread) { if (!is_good_object (thread)) return ESRCH; (*thread)->mutex.lock (); if ((*thread)->attr.joinable == PTHREAD_CREATE_DETACHED) { (*thread)->mutex.unlock (); return EINVAL; } // check if thread is still alive if ((*thread)->valid && WaitForSingleObject ((*thread)->win32_obj_id, 0) == WAIT_TIMEOUT) { // force cleanup on exit (*thread)->joiner = *thread; (*thread)->attr.joinable = PTHREAD_CREATE_DETACHED; (*thread)->mutex.unlock (); } else { // thread has already terminated. (*thread)->mutex.unlock (); delete (*thread); } return 0; } int pthread::suspend (pthread_t *thread) { if (!is_good_object (thread)) return ESRCH; if ((*thread)->suspended == false) { (*thread)->suspended = true; SuspendThread ((*thread)->win32_obj_id); } return 0; } int pthread::resume (pthread_t *thread) { if (!is_good_object (thread)) return ESRCH; if ((*thread)->suspended == true) ResumeThread ((*thread)->win32_obj_id); (*thread)->suspended = false; return 0; } static inline int pthread_convert_abstime (clockid_t clock_id, const struct timespec *abstime, PLARGE_INTEGER timeout) { struct timespec tp; /* According to SUSv3, the abstime value must be checked for validity. */ if (!valid_timespec (*abstime)) return EINVAL; /* Check for immediate timeout before converting */ clock_gettime (clock_id, &tp); if (tp.tv_sec > abstime->tv_sec || (tp.tv_sec == abstime->tv_sec && tp.tv_nsec > abstime->tv_nsec)) return ETIMEDOUT; timeout->QuadPart = abstime->tv_sec * NS100PERSEC + (abstime->tv_nsec + (NSPERSEC/NS100PERSEC) - 1) / (NSPERSEC/NS100PERSEC); switch (clock_id) { case CLOCK_REALTIME_COARSE: case CLOCK_REALTIME: timeout->QuadPart += FACTOR; break; default: /* other clocks must be handled as relative timeout */ timeout->QuadPart -= tp.tv_sec * NS100PERSEC + tp.tv_nsec / (NSPERSEC/NS100PERSEC); timeout->QuadPart *= -1LL; break; } return 0; } extern "C" int pthread_join (pthread_t thread, void **return_val) { return pthread::join (&thread, (void **) return_val, NULL); } extern "C" int pthread_tryjoin_np (pthread_t thread, void **return_val) { LARGE_INTEGER timeout = { QuadPart:0LL }; return pthread::join (&thread, (void **) return_val, &timeout); } extern "C" int pthread_timedjoin_np (pthread_t thread, void **return_val, const struct timespec *abstime) { LARGE_INTEGER timeout; int err = pthread_convert_abstime (CLOCK_REALTIME, abstime, &timeout); if (err) return err; return pthread::join (&thread, (void **) return_val, &timeout); } extern "C" int pthread_getaffinity_np (pthread_t thread, size_t sizeof_set, cpu_set_t *set) { if (!pthread::is_good_object (&thread)) return ESRCH; return sched_get_thread_affinity (thread->win32_obj_id, sizeof_set, set); } extern "C" int pthread_setaffinity_np (pthread_t thread, size_t sizeof_set, const cpu_set_t *set) { if (!pthread::is_good_object (&thread)) return ESRCH; return sched_set_thread_affinity (thread->win32_obj_id, sizeof_set, set); } extern "C" int pthread_getattr_np (pthread_t thread, pthread_attr_t *attr) { THREAD_BASIC_INFORMATION tbi; NTSTATUS status; if (!pthread::is_good_object (&thread)) return ESRCH; /* attr may not be pre-initialized */ if (!pthread_attr::is_good_object (attr)) { int rv = pthread_attr_init (attr); if (rv != 0) return rv; } (*attr)->joinable = thread->attr.joinable; (*attr)->contentionscope = thread->attr.contentionscope; (*attr)->inheritsched = thread->attr.inheritsched; (*attr)->schedparam = thread->attr.schedparam; (*attr)->guardsize = thread->attr.guardsize; status = NtQueryInformationThread (thread->win32_obj_id, ThreadBasicInformation, &tbi, sizeof (tbi), NULL); if (NT_SUCCESS (status)) { PTEB teb = (PTEB) tbi.TebBaseAddress; /* stackaddr holds the uppermost stack address. See the comments in pthread_attr_setstack and pthread_attr_setstackaddr for a description. */ (*attr)->stackaddr = teb->Tib.StackBase; (*attr)->stacksize = (uintptr_t) teb->Tib.StackBase - (uintptr_t) (teb->DeallocationStack ?: teb->Tib.StackLimit); } else { debug_printf ("NtQueryInformationThread(ThreadBasicInformation), " "status %y", status); (*attr)->stackaddr = thread->attr.stackaddr; (*attr)->stacksize = thread->attr.stacksize; } return 0; } /* For Linux compatibility, the length of a thread name is 16 characters. */ #define THRNAMELEN 16 extern "C" int pthread_getname_np (pthread_t thread, char *buf, size_t buflen) { char *name; if (!pthread::is_good_object (&thread)) return ESRCH; if (!thread->attr.name) name = program_invocation_short_name; else name = thread->attr.name; /* Return ERANGE if the provided buffer is less than THRNAMELEN. Truncate and zero-terminate the name to fit in buf. This means we always return something if the buffer is THRNAMELEN or larger, but there is no way to tell if we have the whole name. */ if (buflen < THRNAMELEN) return ERANGE; int ret = 0; __try { strlcpy (buf, name, buflen); } __except (NO_ERROR) { ret = EFAULT; } __endtry return ret; } extern "C" int pthread_setname_np (pthread_t thread, const char *name) { char *oldname, *cp; if (!pthread::is_good_object (&thread)) return ESRCH; if (strlen (name) > THRNAMELEN) return ERANGE; cp = strdup (name); if (!cp) return ENOMEM; oldname = thread->attr.name; thread->attr.name = cp; SetThreadName (GetThreadId (thread->win32_obj_id), thread->attr.name); if (oldname) free (oldname); return 0; } /* Returns running thread's name; works for both cygthreads and pthreads */ char * mythreadname (void) { char *result = (char *) cygthread::name (); if (result == _my_tls.locals.unknown_thread_name) { result[0] = '\0'; pthread_getname_np (pthread_self (), result, (size_t) THRNAMELEN); } return result; } #undef THRNAMELEN /* provided for source level compatability. See http://www.opengroup.org/onlinepubs/007908799/xsh/pthread_getconcurrency.html */ extern "C" int pthread_getconcurrency () { return MT_INTERFACE->concurrency; } extern "C" int pthread_getcpuclockid (pthread_t thread, clockid_t *clk_id) { if (!pthread::is_good_object (&thread)) return (ESRCH); *clk_id = (clockid_t) THREADID_TO_CLOCKID (thread->getsequence_np ()); return 0; } /* keep this in sync with sched.cc */ extern "C" int pthread_getschedparam (pthread_t thread, int *policy, struct sched_param *param) { if (!pthread::is_good_object (&thread)) return ESRCH; *policy = SCHED_FIFO; param->sched_priority = sched_get_thread_priority (thread->win32_obj_id); return 0; } /* Thread Specific Data */ extern "C" int pthread_key_create (pthread_key_t *key, void (*destructor) (void *)) { *key = new pthread_key (destructor); if (!pthread_key::is_good_object (key)) { delete (*key); *key = NULL; return EAGAIN; } return 0; } extern "C" int pthread_key_delete (pthread_key_t key) { if (!pthread_key::is_good_object (&key)) return EINVAL; delete (key); return 0; } /* provided for source level compatability. See http://www.opengroup.org/onlinepubs/007908799/xsh/pthread_getconcurrency.html */ extern "C" int pthread_setconcurrency (int new_level) { if (new_level < 0) return EINVAL; MT_INTERFACE->concurrency = new_level; return 0; } /* keep syncronised with sched.cc */ extern "C" int pthread_setschedparam (pthread_t thread, int policy, const struct sched_param *param) { if (!pthread::is_good_object (&thread)) return ESRCH; if (policy != SCHED_FIFO) return ENOTSUP; if (!param) return EINVAL; int rv = sched_set_thread_priority (thread->win32_obj_id, param->sched_priority); if (!rv) thread->attr.schedparam.sched_priority = param->sched_priority; return rv; } extern "C" int pthread_setschedprio (pthread_t thread, int priority) { if (!pthread::is_good_object (&thread)) return ESRCH; int rv = sched_set_thread_priority (thread->win32_obj_id, priority); if (!rv) thread->attr.schedparam.sched_priority = priority; return rv; } extern "C" int pthread_setspecific (pthread_key_t key, const void *value) { if (!pthread_key::is_good_object (&key)) return EINVAL; (key)->set (value); return 0; } extern "C" void * pthread_getspecific (pthread_key_t key) { if (!pthread_key::is_good_object (&key)) return NULL; return (key)->get (); } extern "C" int pthread_cond_destroy (pthread_cond_t *cond) { if (pthread_cond::is_initializer (cond)) return 0; if (!pthread_cond::is_good_object (cond)) return EINVAL; /* reads are atomic */ if ((*cond)->waiting) return EBUSY; delete (*cond); *cond = NULL; return 0; } int pthread_cond::init (pthread_cond_t *cond, const pthread_condattr_t *attr) { pthread_cond_t new_cond; if (attr && !pthread_condattr::is_good_object (attr)) return EINVAL; cond_initialization_lock.lock (); new_cond = new pthread_cond (attr ? (*attr) : NULL); if (!is_good_object (&new_cond)) { delete new_cond; cond_initialization_lock.unlock (); return EAGAIN; } int ret = 0; __try { *cond = new_cond; } __except (NO_ERROR) { delete new_cond; ret = EINVAL; } __endtry cond_initialization_lock.unlock (); return ret; } extern "C" int pthread_cond_broadcast (pthread_cond_t *cond) { if (pthread_cond::is_initializer (cond)) return 0; if (!pthread_cond::is_good_object (cond)) return EINVAL; (*cond)->unblock (true); return 0; } extern "C" int pthread_cond_signal (pthread_cond_t *cond) { if (pthread_cond::is_initializer (cond)) return 0; if (!pthread_cond::is_good_object (cond)) return EINVAL; (*cond)->unblock (false); return 0; } static int __pthread_cond_wait_init (pthread_cond_t *cond, pthread_mutex_t *mutex) { if (!pthread_mutex::is_good_object (mutex)) return EINVAL; if (!(*mutex)->can_be_unlocked ()) return EPERM; if (pthread_cond::is_initializer (cond)) pthread_cond::init (cond, NULL); if (!pthread_cond::is_good_object (cond)) return EINVAL; return 0; } static int __pthread_cond_clockwait (pthread_cond_t *cond, pthread_mutex_t *mutex, clockid_t clock_id, const struct timespec *abstime) { int err = 0; LARGE_INTEGER timeout; do { err = pthread_convert_abstime (clock_id, abstime, &timeout); if (err) break; err = (*cond)->wait (*mutex, &timeout); } while (err == ETIMEDOUT); return err; } extern "C" int pthread_cond_clockwait (pthread_cond_t *cond, pthread_mutex_t *mutex, clockid_t clock_id, const struct timespec *abstime) { int err = 0; pthread_testcancel (); __try { err = __pthread_cond_wait_init (cond, mutex); if (err) __leave; err = __pthread_cond_clockwait (cond, mutex, clock_id, abstime); } __except (NO_ERROR) { return EINVAL; } __endtry return err; } extern "C" int pthread_cond_timedwait (pthread_cond_t *cond, pthread_mutex_t *mutex, const struct timespec *abstime) { int err = 0; pthread_testcancel (); __try { err = __pthread_cond_wait_init (cond, mutex); if (err) __leave; err = __pthread_cond_clockwait (cond, mutex, (*cond)->clock_id, abstime); } __except (NO_ERROR) { return EINVAL; } __endtry return err; } extern "C" int pthread_cond_wait (pthread_cond_t *cond, pthread_mutex_t *mutex) { pthread_testcancel (); int err = __pthread_cond_wait_init (cond, mutex); if (err) return err; return (*cond)->wait (*mutex, NULL); } extern "C" int pthread_condattr_init (pthread_condattr_t *condattr) { *condattr = new pthread_condattr; if (!pthread_condattr::is_good_object (condattr)) { delete (*condattr); *condattr = NULL; return ENOMEM; } return 0; } extern "C" int pthread_condattr_getpshared (const pthread_condattr_t *attr, int *pshared) { if (!pthread_condattr::is_good_object (attr)) return EINVAL; *pshared = (*attr)->shared; return 0; } extern "C" int pthread_condattr_setpshared (pthread_condattr_t *attr, int pshared) { if (!pthread_condattr::is_good_object (attr)) return EINVAL; if ((pshared < 0) || (pshared > 1)) return EINVAL; /* shared cond vars not currently supported */ if (pshared != PTHREAD_PROCESS_PRIVATE) return EINVAL; (*attr)->shared = pshared; return 0; } extern "C" int pthread_condattr_getclock (const pthread_condattr_t *attr, clockid_t *clock_id) { if (!pthread_condattr::is_good_object (attr)) return EINVAL; *clock_id = (*attr)->clock_id; return 0; } extern "C" int pthread_condattr_setclock (pthread_condattr_t *attr, clockid_t clock_id) { if (!pthread_condattr::is_good_object (attr)) return EINVAL; if (CLOCKID_IS_PROCESS (clock_id) || CLOCKID_IS_THREAD (clock_id) || clock_id >= MAX_CLOCKS) return EINVAL; (*attr)->clock_id = clock_id; return 0; } extern "C" int pthread_condattr_destroy (pthread_condattr_t *condattr) { if (!pthread_condattr::is_good_object (condattr)) return EINVAL; delete (*condattr); *condattr = NULL; return 0; } extern "C" int pthread_rwlock_destroy (pthread_rwlock_t *rwlock) { if (pthread_rwlock::is_initializer (rwlock)) return 0; if (!pthread_rwlock::is_good_object (rwlock)) return EINVAL; if ((*rwlock)->writer || (*rwlock)->readers || (*rwlock)->waiting_readers || (*rwlock)->waiting_writers) return EBUSY; delete (*rwlock); *rwlock = NULL; return 0; } int pthread_rwlock::init (pthread_rwlock_t *rwlock, const pthread_rwlockattr_t *attr) { pthread_rwlock_t new_rwlock; if (attr && !pthread_rwlockattr::is_good_object (attr)) return EINVAL; rwlock_initialization_lock.lock (); new_rwlock = new pthread_rwlock (attr ? (*attr) : NULL); if (!is_good_object (&new_rwlock)) { delete new_rwlock; rwlock_initialization_lock.unlock (); return EAGAIN; } int ret = 0; __try { *rwlock = new_rwlock; } __except (NO_ERROR) { delete new_rwlock; ret = EINVAL; } __endtry rwlock_initialization_lock.unlock (); return ret; } extern "C" int pthread_rwlock_rdlock (pthread_rwlock_t *rwlock) { pthread_testcancel (); if (pthread_rwlock::is_initializer (rwlock)) pthread_rwlock::init (rwlock, NULL); if (!pthread_rwlock::is_good_object (rwlock)) return EINVAL; return (*rwlock)->rdlock (); } extern "C" int pthread_rwlock_timedrdlock (pthread_rwlock_t *rwlock, const struct timespec *abstime) { LARGE_INTEGER timeout; pthread_testcancel (); if (pthread_rwlock::is_initializer (rwlock)) pthread_rwlock::init (rwlock, NULL); if (!pthread_rwlock::is_good_object (rwlock)) return EINVAL; /* According to SUSv3, abstime need not be checked for validity, if the rwlock can be locked immediately. */ if (!(*rwlock)->tryrdlock ()) return 0; __try { int err = pthread_convert_abstime (CLOCK_REALTIME, abstime, &timeout); if (err) return err; return (*rwlock)->rdlock (&timeout); } __except (NO_ERROR) {} __endtry return EINVAL; } extern "C" int pthread_rwlock_tryrdlock (pthread_rwlock_t *rwlock) { if (pthread_rwlock::is_initializer (rwlock)) pthread_rwlock::init (rwlock, NULL); if (!pthread_rwlock::is_good_object (rwlock)) return EINVAL; return (*rwlock)->tryrdlock (); } extern "C" int pthread_rwlock_wrlock (pthread_rwlock_t *rwlock) { pthread_testcancel (); if (pthread_rwlock::is_initializer (rwlock)) pthread_rwlock::init (rwlock, NULL); if (!pthread_rwlock::is_good_object (rwlock)) return EINVAL; return (*rwlock)->wrlock (); } extern "C" int pthread_rwlock_timedwrlock (pthread_rwlock_t *rwlock, const struct timespec *abstime) { LARGE_INTEGER timeout; pthread_testcancel (); if (pthread_rwlock::is_initializer (rwlock)) pthread_rwlock::init (rwlock, NULL); if (!pthread_rwlock::is_good_object (rwlock)) return EINVAL; /* According to SUSv3, abstime need not be checked for validity, if the rwlock can be locked immediately. */ if (!(*rwlock)->trywrlock ()) return 0; __try { int err = pthread_convert_abstime (CLOCK_REALTIME, abstime, &timeout); if (err) return err; return (*rwlock)->wrlock (&timeout); } __except (NO_ERROR) {} __endtry return EINVAL; } extern "C" int pthread_rwlock_trywrlock (pthread_rwlock_t *rwlock) { if (pthread_rwlock::is_initializer (rwlock)) pthread_rwlock::init (rwlock, NULL); if (!pthread_rwlock::is_good_object (rwlock)) return EINVAL; return (*rwlock)->trywrlock (); } extern "C" int pthread_rwlock_unlock (pthread_rwlock_t *rwlock) { if (pthread_rwlock::is_initializer (rwlock)) return 0; if (!pthread_rwlock::is_good_object (rwlock)) return EINVAL; return (*rwlock)->unlock (); } extern "C" int pthread_rwlockattr_init (pthread_rwlockattr_t *rwlockattr) { *rwlockattr = new pthread_rwlockattr; if (!pthread_rwlockattr::is_good_object (rwlockattr)) { delete (*rwlockattr); *rwlockattr = NULL; return ENOMEM; } return 0; } extern "C" int pthread_rwlockattr_getpshared (const pthread_rwlockattr_t *attr, int *pshared) { if (!pthread_rwlockattr::is_good_object (attr)) return EINVAL; *pshared = (*attr)->shared; return 0; } extern "C" int pthread_rwlockattr_setpshared (pthread_rwlockattr_t *attr, int pshared) { if (!pthread_rwlockattr::is_good_object (attr)) return EINVAL; if ((pshared < 0) || (pshared > 1)) return EINVAL; /* shared rwlock vars not currently supported */ if (pshared != PTHREAD_PROCESS_PRIVATE) return EINVAL; (*attr)->shared = pshared; return 0; } extern "C" int pthread_rwlockattr_destroy (pthread_rwlockattr_t *rwlockattr) { if (!pthread_rwlockattr::is_good_object (rwlockattr)) return EINVAL; delete (*rwlockattr); *rwlockattr = NULL; return 0; } /* Thread signal */ extern "C" int pthread_kill (pthread_t thread, int sig) { // lock myself, for the use of thread2signal // two different kills might clash: FIXME if (!pthread::is_good_object (&thread)) return EINVAL; siginfo_t si = {0}; si.si_signo = sig; si.si_code = SI_USER; si.si_pid = myself->pid; si.si_uid = myself->uid; int rval; if (!thread->valid) rval = ESRCH; else if (sig) { rval = (int) sig_send (NULL, si, thread->cygtls); if (rval == -1) rval = get_errno (); } else switch (WaitForSingleObject (thread->win32_obj_id, 0)) { case WAIT_TIMEOUT: rval = 0; break; default: rval = ESRCH; break; } // unlock myself return rval; } extern "C" int pthread_sigmask (int operation, const sigset_t *set, sigset_t *old_set) { int res = handle_sigprocmask (operation, set, old_set, _my_tls.sigmask); syscall_printf ("%d = pthread_sigmask(%d, %p, %p)", res, operation, set, old_set); return res; } extern "C" int pthread_sigqueue (pthread_t *thread, int sig, const union sigval value) { siginfo_t si = {0}; if (!pthread::is_good_object (thread)) return EINVAL; if (!(*thread)->valid) return ESRCH; si.si_signo = sig; si.si_code = SI_QUEUE; si.si_value = value; si.si_pid = myself->pid; si.si_uid = myself->uid; return (int) sig_send (NULL, si, (*thread)->cygtls); } /* ID */ extern "C" int pthread_equal (pthread_t t1, pthread_t t2) { return pthread::equal (t1, t2); } /* Mutexes */ int pthread_mutex::init (pthread_mutex_t *mutex, const pthread_mutexattr_t *attr, const pthread_mutex_t initializer) { if (attr && !pthread_mutexattr::is_good_object (attr)) return EINVAL; mutex_initialization_lock.lock (); if (initializer == NULL || pthread_mutex::is_initializer (mutex)) { pthread_mutex_t new_mutex = new pthread_mutex (attr ? (*attr) : NULL); if (!is_good_object (&new_mutex)) { delete new_mutex; mutex_initialization_lock.unlock (); return EAGAIN; } if (!attr && initializer) { if (initializer == PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP) new_mutex->type = PTHREAD_MUTEX_RECURSIVE; else if (initializer == PTHREAD_NORMAL_MUTEX_INITIALIZER_NP) new_mutex->type = PTHREAD_MUTEX_NORMAL; else if (initializer == PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP) new_mutex->type = PTHREAD_MUTEX_ERRORCHECK; } __try { *mutex = new_mutex; } __except (NO_ERROR) { delete new_mutex; mutex_initialization_lock.unlock (); return EINVAL; } __endtry } mutex_initialization_lock.unlock (); pthread_printf ("*mutex %p, attr %p, initializer %p", *mutex, attr, initializer); return 0; } extern "C" int pthread_mutex_getprioceiling (const pthread_mutex_t *mutex, int *prioceiling) { /* We don't define _POSIX_THREAD_PRIO_PROTECT because we do't currently support mutex priorities. We can support mutex priorities in the future though: Store a priority with each mutex. When the mutex is optained, set the thread priority as appropriate When the mutex is released, reset the thread priority. */ return ENOSYS; } extern "C" int pthread_mutex_lock (pthread_mutex_t *mutex) { if (pthread_mutex::is_initializer (mutex)) pthread_mutex::init (mutex, NULL, *mutex); if (!pthread_mutex::is_good_object (mutex)) return EINVAL; return (*mutex)->lock (); } extern "C" int pthread_mutex_clocklock (pthread_mutex_t *mutex, clockid_t clock_id, const struct timespec *abstime) { LARGE_INTEGER timeout; if (pthread_mutex::is_initializer (mutex)) pthread_mutex::init (mutex, NULL, *mutex); if (!pthread_mutex::is_good_object (mutex)) return EINVAL; /* According to SUSv3, abstime need not be checked for validity, if the mutex can be locked immediately. */ if (!(*mutex)->trylock ()) return 0; __try { int err = pthread_convert_abstime (clock_id, abstime, &timeout); if (err) return err; return (*mutex)->lock (&timeout); } __except (NO_ERROR) {} __endtry return EINVAL; } extern "C" int pthread_mutex_timedlock (pthread_mutex_t *mutex, const struct timespec *abstime) { return pthread_mutex_clocklock (mutex, CLOCK_REALTIME, abstime); } extern "C" int pthread_mutex_trylock (pthread_mutex_t *mutex) { if (pthread_mutex::is_initializer (mutex)) pthread_mutex::init (mutex, NULL, *mutex); if (!pthread_mutex::is_good_object (mutex)) return EINVAL; return (*mutex)->trylock (); } extern "C" int pthread_mutex_unlock (pthread_mutex_t *mutex) { if (pthread_mutex::is_initializer (mutex)) pthread_mutex::init (mutex, NULL, *mutex); if (!pthread_mutex::is_good_object (mutex)) return EINVAL; return (*mutex)->unlock (); } extern "C" int pthread_mutex_destroy (pthread_mutex_t *mutex) { int rv; if (pthread_mutex::is_initializer (mutex)) return 0; if (!pthread_mutex::is_good_object (mutex)) return EINVAL; rv = (*mutex)->destroy (); if (rv) return rv; *mutex = NULL; return 0; } extern "C" int pthread_mutex_setprioceiling (pthread_mutex_t *mutex, int prioceiling, int *old_ceiling) { return ENOSYS; } /* Spinlocks */ int pthread_spinlock::init (pthread_spinlock_t *spinlock, int pshared) { pthread_spinlock_t new_spinlock = new pthread_spinlock (pshared); if (!is_good_object (&new_spinlock)) { delete new_spinlock; return EAGAIN; } __try { *spinlock = new_spinlock; } __except (NO_ERROR) { delete new_spinlock; return EINVAL; } __endtry pthread_printf ("*spinlock %p, pshared %d", *spinlock, pshared); return 0; } extern "C" int pthread_spin_lock (pthread_spinlock_t *spinlock) { if (!pthread_spinlock::is_good_object (spinlock)) return EINVAL; return (*spinlock)->lock (); } extern "C" int pthread_spin_trylock (pthread_spinlock_t *spinlock) { if (!pthread_spinlock::is_good_object (spinlock)) return EINVAL; return (*spinlock)->trylock (); } extern "C" int pthread_spin_unlock (pthread_spinlock_t *spinlock) { if (!pthread_spinlock::is_good_object (spinlock)) return EINVAL; return (*spinlock)->unlock (); } extern "C" int pthread_spin_destroy (pthread_spinlock_t *spinlock) { if (!pthread_spinlock::is_good_object (spinlock)) return EINVAL; return (*spinlock)->destroy (); } /* Win32 doesn't support mutex priorities - see __pthread_mutex_getprioceiling for more detail */ extern "C" int pthread_mutexattr_getprotocol (const pthread_mutexattr_t *attr, int *protocol) { if (!pthread_mutexattr::is_good_object (attr)) return EINVAL; return ENOSYS; } extern "C" int pthread_mutexattr_getpshared (const pthread_mutexattr_t *attr, int *pshared) { if (!pthread_mutexattr::is_good_object (attr)) return EINVAL; *pshared = (*attr)->pshared; return 0; } extern "C" int pthread_mutexattr_gettype (const pthread_mutexattr_t *attr, int *type) { if (!pthread_mutexattr::is_good_object (attr)) return EINVAL; *type = (*attr)->mutextype; return 0; } /* FIXME: write and test process shared mutex's. */ extern "C" int pthread_mutexattr_init (pthread_mutexattr_t *attr) { *attr = new pthread_mutexattr (); if (!pthread_mutexattr::is_good_object (attr)) { delete (*attr); *attr = NULL; return ENOMEM; } return 0; } extern "C" int pthread_mutexattr_destroy (pthread_mutexattr_t *attr) { if (!pthread_mutexattr::is_good_object (attr)) return EINVAL; delete (*attr); *attr = NULL; return 0; } /* Win32 doesn't support mutex priorities */ extern "C" int pthread_mutexattr_setprotocol (pthread_mutexattr_t *attr, int protocol) { if (!pthread_mutexattr::is_good_object (attr)) return EINVAL; return ENOSYS; } /* Win32 doesn't support mutex priorities */ extern "C" int pthread_mutexattr_setprioceiling (pthread_mutexattr_t *attr, int prioceiling) { if (!pthread_mutexattr::is_good_object (attr)) return EINVAL; return ENOSYS; } extern "C" int pthread_mutexattr_getprioceiling (const pthread_mutexattr_t *attr, int *prioceiling) { if (!pthread_mutexattr::is_good_object (attr)) return EINVAL; return ENOSYS; } extern "C" int pthread_mutexattr_setpshared (pthread_mutexattr_t *attr, int pshared) { if (!pthread_mutexattr::is_good_object (attr)) return EINVAL; /* we don't use pshared for anything as yet. We need to test PROCESS_SHARED *functionality */ if (pshared != PTHREAD_PROCESS_PRIVATE) return EINVAL; (*attr)->pshared = pshared; return 0; } /* see pthread_mutex_gettype */ extern "C" int pthread_mutexattr_settype (pthread_mutexattr_t *attr, int type) { if (!pthread_mutexattr::is_good_object (attr)) return EINVAL; switch (type) { case PTHREAD_MUTEX_ERRORCHECK: case PTHREAD_MUTEX_RECURSIVE: case PTHREAD_MUTEX_NORMAL: (*attr)->mutextype = type; break; default: return EINVAL; } return 0; } /* Semaphores */ List semaphore::semaphores; semaphore::semaphore (int pshared, unsigned int value) : verifyable_object (SEM_MAGIC), shared (pshared), currentvalue (-1), startvalue (value), fd (-1), hash (0ULL), sem (NULL) { SECURITY_ATTRIBUTES sa = (pshared != PTHREAD_PROCESS_PRIVATE) ? sec_all : sec_none_nih; this->win32_obj_id = ::CreateSemaphore (&sa, value, INT32_MAX, NULL); if (!this->win32_obj_id) magic = 0; semaphores.insert (this); } semaphore::semaphore (unsigned long long shash, LUID sluid, int sfd, sem_t *ssem, int oflag, mode_t mode, unsigned int value) : verifyable_object (SEM_MAGIC), shared (PTHREAD_PROCESS_SHARED), currentvalue (-1), /* Unused for named semaphores. */ startvalue (value), fd (sfd), hash (shash), luid (sluid), sem (ssem) { char name[MAX_PATH]; __small_sprintf (name, "semaphore/%016X%08x%08x", hash, luid.HighPart, luid.LowPart); this->win32_obj_id = ::CreateSemaphore (&sec_all, value, INT32_MAX, name); if (!this->win32_obj_id) magic = 0; if (GetLastError () == ERROR_ALREADY_EXISTS && (oflag & O_EXCL)) { __seterrno (); CloseHandle (this->win32_obj_id); magic = 0; } semaphores.insert (this); } semaphore::~semaphore () { if (win32_obj_id) CloseHandle (win32_obj_id); semaphores.remove (this); } void semaphore::_post () { LONG dummy; ReleaseSemaphore (win32_obj_id, 1, &dummy); } int semaphore::_getvalue (int *sval) { NTSTATUS status; SEMAPHORE_BASIC_INFORMATION sbi; status = NtQuerySemaphore (win32_obj_id, SemaphoreBasicInformation, &sbi, sizeof sbi, NULL); int res; if (NT_SUCCESS (status)) { *sval = sbi.CurrentCount; res = 0; } else { *sval = startvalue; __seterrno_from_nt_status (status); res = -1; } return res; } int semaphore::_trywait () { /* FIXME: signals should be able to interrupt semaphores... We probably need WaitForMultipleObjects here. */ if (WaitForSingleObject (win32_obj_id, 0) == WAIT_TIMEOUT) { set_errno (EAGAIN); return -1; } return 0; } int semaphore::_wait (PLARGE_INTEGER timeout) { __try { switch (cygwait (win32_obj_id, timeout, cw_cancel | cw_cancel_self | cw_sig_eintr)) { case WAIT_OBJECT_0: break; case WAIT_SIGNALED: set_errno (EINTR); return -1; case WAIT_TIMEOUT: set_errno (ETIMEDOUT); return -1; default: pthread_printf ("cygwait failed. %E"); __seterrno (); return -1; } } __except (NO_ERROR) {} __endtry return 0; } void semaphore::_fixup_before_fork () { NTSTATUS status; SEMAPHORE_BASIC_INFORMATION sbi; status = NtQuerySemaphore (win32_obj_id, SemaphoreBasicInformation, &sbi, sizeof sbi, NULL); if (NT_SUCCESS (status)) currentvalue = sbi.CurrentCount; else currentvalue = startvalue; } void semaphore::_fixup_after_fork () { if (shared == PTHREAD_PROCESS_PRIVATE) { pthread_printf ("sem %p", this); win32_obj_id = ::CreateSemaphore (&sec_none_nih, currentvalue, INT32_MAX, NULL); if (!win32_obj_id) api_fatal ("failed to create new win32 semaphore, " "currentvalue %ld, %E", currentvalue); } } void semaphore::_terminate () { int _sem_close (sem_t *, bool); if (sem) _sem_close (sem, false); } /* static members */ int semaphore::init (sem_t *sem, int pshared, unsigned int value) { /* We can't tell the difference between reinitialising an existing semaphore and initialising a semaphore who's contents happen to be a valid pointer */ if (is_good_object (sem)) paranoid_printf ("potential attempt to reinitialise a semaphore"); if (value > SEM_VALUE_MAX) { set_errno(EINVAL); return -1; } *sem = new semaphore (pshared, value); if (!is_good_object (sem)) { delete (*sem); *sem = NULL; set_errno(EAGAIN); return -1; } return 0; } int semaphore::destroy (sem_t *sem) { if (!is_good_object (sem)) { set_errno(EINVAL); return -1; } /* It's invalid to destroy a semaphore not opened with sem_init. */ if ((*sem)->fd != -1) { set_errno(EINVAL); return -1; } /* FIXME - new feature - test for busy against threads... */ delete (*sem); *sem = NULL; return 0; } int semaphore::close (sem_t *sem) { if (!is_good_object (sem)) { set_errno(EINVAL); return -1; } /* It's invalid to close a semaphore not opened with sem_open. */ if ((*sem)->fd == -1) { set_errno(EINVAL); return -1; } delete (*sem); delete sem; return 0; } sem_t * semaphore::open (unsigned long long hash, LUID luid, int fd, int oflag, mode_t mode, unsigned int value, bool &wasopen) { if (value > SEM_VALUE_MAX) { set_errno (EINVAL); return NULL; } /* sem_open is supposed to return the same pointer, if the same named semaphore is opened multiple times in the same process, as long as the semaphore hasn't been closed or unlinked in the meantime. */ semaphores.mx.lock (); for (semaphore *sema = semaphores.head; sema; sema = sema->next) if (sema->fd >= 0 && sema->hash == hash && sema->luid.HighPart == luid.HighPart && sema->luid.LowPart == luid.LowPart) { wasopen = true; semaphores.mx.unlock (); return sema->sem; } semaphores.mx.unlock (); wasopen = false; sem_t *sem = new sem_t; if (!sem) { set_errno (ENOMEM); return NULL; } *sem = new semaphore (hash, luid, fd, sem, oflag, mode, value); if (!is_good_object (sem)) { delete *sem; delete sem; return NULL; } return sem; } int semaphore::wait (sem_t *sem) { pthread_testcancel (); if (!is_good_object (sem)) { set_errno (EINVAL); return -1; } return (*sem)->_wait (); } int semaphore::trywait (sem_t *sem) { if (!is_good_object (sem)) { set_errno (EINVAL); return -1; } return (*sem)->_trywait (); } int semaphore::clockwait (sem_t *sem, clockid_t clock_id, const struct timespec *abstime) { LARGE_INTEGER timeout; if (!is_good_object (sem)) { set_errno (EINVAL); return -1; } /* According to SUSv3, abstime need not be checked for validity, if the semaphore can be locked immediately. */ if (!(*sem)->_trywait ()) return 0; __try { int err = pthread_convert_abstime (clock_id, abstime, &timeout); if (err) return err; return (*sem)->_wait (&timeout); } __except (NO_ERROR) {} __endtry return EINVAL; } int semaphore::post (sem_t *sem) { if (!is_good_object (sem)) { set_errno (EINVAL); return -1; } (*sem)->_post (); return 0; } int semaphore::getvalue (sem_t *sem, int *sval) { __try { if (is_good_object (sem)) return (*sem)->_getvalue (sval); } __except (NO_ERROR) {} __endtry set_errno (EINVAL); return -1; } int semaphore::getinternal (sem_t *sem, int *sfd, unsigned long long *shash, LUID *sluid, unsigned int *sval) { __try { if (!is_good_object (sem)) __leave; if ((*sfd = (*sem)->fd) < 0) __leave; *shash = (*sem)->hash; *sluid = (*sem)->luid; /* POSIX defines the value in calls to sem_init/sem_open as unsigned, but the sem_getvalue gets a pointer to int to return the value. Go figure! */ return (*sem)->_getvalue ((int *)sval); } __except (NO_ERROR) {} __endtry set_errno (EINVAL); return -1; } /* pthread_null */ pthread * pthread_null::get_null_pthread () { /* because of weird entry points */ _instance.magic = 0; return &_instance; } pthread_null::pthread_null () { attr.joinable = PTHREAD_CREATE_DETACHED; /* Mark ourselves as invalid */ magic = 0; } pthread_null::~pthread_null () { } bool pthread_null::create (void *(*)(void *), pthread_attr *, void *) { return true; } void pthread_null::exit (void *value_ptr) { _my_tls.remove (INFINITE); ExitThread (0); } int pthread_null::cancel () { return 0; } void pthread_null::testcancel () { } int pthread_null::setcancelstate (int state, int *oldstate) { return EINVAL; } int pthread_null::setcanceltype (int type, int *oldtype) { return EINVAL; } void pthread_null::push_cleanup_handler (__pthread_cleanup_handler *handler) { } void pthread_null::pop_cleanup_handler (int const execute) { } unsigned long pthread_null::getsequence_np () { return 0; } pthread_null pthread_null::_instance; extern "C" int pthread_barrierattr_init (pthread_barrierattr_t * battr) { if (unlikely (battr == NULL)) return EINVAL; *battr = new pthread_barrierattr; (*battr)->shared = PTHREAD_PROCESS_PRIVATE; return 0; } extern "C" int pthread_barrierattr_setpshared (pthread_barrierattr_t * battr, int shared) { if (unlikely (! pthread_barrierattr::is_good_object (battr))) return EINVAL; if (unlikely (shared != PTHREAD_PROCESS_SHARED && shared != PTHREAD_PROCESS_PRIVATE)) return EINVAL; (*battr)->shared = shared; return 0; } extern "C" int pthread_barrierattr_getpshared (const pthread_barrierattr_t * battr, int * shared) { if (unlikely (! pthread_barrierattr::is_good_object (battr) || shared == NULL)) return EINVAL; *shared = (*battr)->shared; return 0; } extern "C" int pthread_barrierattr_destroy (pthread_barrierattr_t * battr) { if (unlikely (! pthread_barrierattr::is_good_object (battr))) return EINVAL; delete_and_clear (battr); return 0; } extern "C" int pthread_barrier_init (pthread_barrier_t * bar, const pthread_barrierattr_t * attr, unsigned count) { if (unlikely (bar == NULL)) return EINVAL; *bar = new pthread_barrier; return (*bar)->init (attr, count); } int pthread_barrier::init (const pthread_barrierattr_t * attr, unsigned count) { pthread_mutex_t * mutex = NULL; if (unlikely ((attr != NULL && (! pthread_barrierattr::is_good_object (attr) || (*attr)->shared == PTHREAD_PROCESS_SHARED)) || count == 0)) return EINVAL; int retval = pthread_mutex_init (&mtx, NULL); if (unlikely (retval != 0)) return retval; retval = pthread_cond_init (&cond, NULL); if (unlikely (retval != 0)) { int ret = pthread_mutex_destroy (mutex); if (ret != 0) api_fatal ("pthread_mutex_destroy (%p) = %d", mutex, ret); mtx = NULL; return retval; } cnt = count; cyc = 0; wt = 0; return 0; } extern "C" int pthread_barrier_destroy (pthread_barrier_t * bar) { if (unlikely (! pthread_barrier::is_good_object (bar))) return EINVAL; int ret; ret = (*bar)->destroy (); if (ret == 0) delete_and_clear (bar); return ret; } int pthread_barrier::destroy () { if (unlikely (wt != 0)) return EBUSY; int retval = pthread_cond_destroy (&cond); if (unlikely (retval != 0)) return retval; else cond = NULL; retval = pthread_mutex_destroy (&mtx); if (unlikely (retval != 0)) return retval; else mtx = NULL; cnt = 0; cyc = 0; wt = 0; return 0; } extern "C" int pthread_barrier_wait (pthread_barrier_t * bar) { if (unlikely (! pthread_barrier::is_good_object (bar))) return EINVAL; return (*bar)->wait (); } int pthread_barrier::wait () { int retval = pthread_mutex_lock (&mtx); if (unlikely (retval != 0)) return retval; if (unlikely (wt >= cnt)) { api_fatal ("wt >= cnt (%u >= %u)", wt, cnt); return EINVAL; } if (unlikely (++wt == cnt)) { ++cyc; /* This is the last thread to reach the barrier. Signal the waiting threads to wake up and continue. */ retval = pthread_cond_broadcast (&cond); if (unlikely (retval != 0)) goto cond_error; wt = 0; retval = pthread_mutex_unlock (&mtx); if (unlikely (retval != 0)) abort (); return PTHREAD_BARRIER_SERIAL_THREAD; } else { uint64_t cycle = cyc; do { retval = pthread_cond_wait (&cond, &mtx); if (unlikely (retval != 0)) goto cond_error; } while (unlikely (cycle == cyc)); retval = pthread_mutex_unlock (&mtx); if (unlikely (retval != 0)) api_fatal ("pthread_mutex_unlock (%p) = %d", &mtx, retval); return 0; } cond_error: { --wt; int ret = pthread_mutex_unlock (&mtx); if (unlikely (ret != 0)) api_fatal ("pthread_mutex_unlock (%p) = %d", &mtx, ret); return retval; } }